Astronomi etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster
Astronomi etiketine sahip kayıtlar gösteriliyor. Tüm kayıtları göster

8 Mayıs 2012 Salı

Işık yılı ne Nedir? bir ışık yılı kaç km eder?

0 yorum | Devamını Oku...
Işık yılı, ışığın bir yılda boşlukta aldığı mesafedir.

Işık hızı saniyede ortalama 300.000 km dir.


Dünya ve Ay arasındaki en büyük uzaklık 1.3 ışık saniyesidir.
Dünya ile Güneş arasındaki en büyük uzaklık 499 ışık saniyesidir (8.3 ışık dakikası).
Oort bulutu yaklaşık 2 ışık yılı çapındadır.
Bize Güneş’ten sonra en yakın yıldız olan Proxima Centauri, 4.2 ışık yılı uzaklıktadır.
Samanyolu galaksisinin çapı 100.000 ışık yılı kadardır.
Samanyolu’nun komşu galaksilerinden Andromeda, bize 2.4 – 2.7 milyon ışık yılı uzaklıktadır.

Buna göre bir ışıkyılı :
24×365=8760×60=525600×60= 31.536.000 x300.000= 9.460.800.000.000 km.dir

26 Aralık 2011 Pazartesi

Kepler

0 yorum | Devamını Oku...

1571’de doğmuş olan Kepler, astronominin ana hatlarını öğrendikten sonra gezegenler sistemini açıklayabilecek bir matematik düzen bulma probleminin adeta hastası olmuştu. Bir yerde “aklımın bütün gücüyle bu problemin üzerinde kara kara düşündüm” diye yazıyordu. Kepler, çağdaşı ve örnek aldığı bir bilim adamı olan Tycho Brahe’nin tam zıttı bir kimseydi. Tycho büyük bir mekanik kabiliyet ve hünere sahipti; fakat matematiğe karşı ilgisi azdı. Kepler bir deneyci olarak beceriksizdi ama matematiğin gücüne hayran olmuş bir kimseydi.Sayıların gücüne karşı duyduğu bu derin saygıyla eski Yunanlılara yaklaşıyor, sayısal bilmeceler çok ilgisini çekiyordu. Hayatını Tycho’nun bıraktığı ve gezegenlerin yerini gösteren çizelgelere vermişti. Tycho Brahe’nin gözlemlerini matematik tasvire çevirirken aynı bu gün herhangi bir ilim adamı gibi davranıyordu. Denel bulguları cetveller dolusu sayılar yerine basit matematiksel kanunlar halinde ifade etmeye çalışıyordu. Matematiksel kanunlarla yalnız gözlemleri açıklamakla kalmayız, aynı zamanda henüz yapılmamış gözlemlerin sonuçlarını da önceden kestirebiliriz, üstelik matematiksel kanunlar sayı çizelgelerinden daha kolay hatırda tutulabilirler ve başkasına çok daha kolay anlatılabilirler.
Kepler’in gezegen yörüngeleri kanunu 5 düzgün katı şekle dayanıyordu. Bu kanuna göre yarıçapı Satürn’ün yörüngesine eşit bir küre bir küpü içine alır(a). Bu küpün içine çizilecek bir kürenin yarıçapı ise Jüpterin yörüngesinin yarıçapına eşittir. Jüpiter’in yörüngesine eşit yarıçaptaki kürenin içine bir düzgün dörtyüzlü çizilebilir(b). Bu dört yüzlünün içine çizilecek kürenin yarıçapı Marsın yörüngesinin yarıçapına eşittir.Mars gezegenin yörüngesinin yarıçapına eşit yarıçaptaki kürenin içine bir düzgün 12 yüzlü çizilebilir(c). Bu düzgün 12 yüzlünün içine çizilecek kürenin yarıçapı yerin yörüngesinin yarıçapına eşittir(d). Böylece bir düzgün katı şekil ve bir küreyi sırayla çizerek düzgün 8 yüzlü için(e) ve düzgün 20 yüzlü içinde Merkür’ün yörüngesinin yarıçapının elde ederiz(f).Kepler bu 5 düzgün yüzlüyü gezegenlerin yörüngeleri arasındaki aralıları kapatan şekiller olarak kabul etmişti. Yalnız 5 tane düzgün yüzlü katı şekil mevcut olduğu için Kepler yalnızca 6 tane gezegen bulunabileceğine inanmıştı.
Kepler ilk kitabında evrende niçin sadece 6 gezegen bulunduğunu anlama çabalarını anlatmıştı. 6 gezegenin yörüngeleri ile 5 tane düzgün yüzlü katı cisim arasında bir bağıntı bulmuştu. O bu yapıdan gezegenlerin o zaman bilinen yörüngelerinin yarıçaplarına uyan oranlar çıkarmıştı.
Kepler bu buluşunu coşkunlukla şöyle anlatmıştı:” bu buluştan duyduğum derin zevk kelimelerle anlatılamaz. Harcadığım zamanı kaybolmuş saymıyorum; çalışmaktan yorulmuş değildim; hipotezimin Copernicus yörüngelerine uyduğunu görünceye kadar, yada uymayıp sevincim kayboluncaya kadar, günler ve geceler boyunca süren hesaplamalarım ve hesapları sınamanın zahmetinden kaçınmıyordum.”
Gezegenlerin yörüngelerinin yarıçapları arasındaki bağıntı. Tycho’nun gözlemleri üzerinde Kepler’in elde etmek istediği sonuçlara tipik bir örnektir. Fakat bununla beraber, en derin bir korelasyon(karşılıklı bağıntı) bile olayların tabiatını açıklamakta derin bir anlama sahip değildir. Bu gün, Keplerin bu buluşu unutulmuş bir olaydan başka bir şey değildir. Bu sistem 6’dan fazla gezegen bulunduğu için yıkıldı. Fakat 7. gezegen Keplerin ölümünden uzun yıllar sonraya kadar keşfedilemedi.
Kepler sonraki gözlemlerle yıkılmayan başka matematiksel bağıntılarda bulmuştu. O, Tycho’nun gözlem sonuçlarını Mars gezegeninin hareketlerinin ayrıntılarıyla inceleyerek analize başladı. Tycho’nun 20 yıllık gözlemleri sırasında Mars nasıl bir yörünge üzerinde hareket etmiştir? Yerin durduğu kabul edilirse mi, Mars daha basit bir eğri üzerinde hareket eder görünecekti? Kepler Copernicus’un düşüncesinin benimsemiş yani yerkürenin hem kendi ekseni etrafında hem de güneş etrafında döndüğünü kabul etmişti. O zamanın geleneklerine uyarak, Kepler önce bir daire üzerinde hareket eden başka dairelerin mümkün olan yörüngelerine uyup uymadıklarını anlamaya çalıştı. Bu alanda sayısız, yorucu , uzun hesaplamalar yaptı. Duran bir yıldızla bir gezegenin arasındaki açıyı (Tycho tarafından ölçülen açılar) duran güneş etrafında dönen, bir gezegenin uzaydaki yerini çevirmek zorunluğu vardı. Üstelik bu açı güneş etrafında dönen yeryüzünden ölçüldüğü için, işlem daha zorlaşıyordu.
Kepler bir daire üzerinde hareket eden başka daireler modeliyle 70 kadar hesaplama yaptıktan sonra, gözlenen gerçeklere ancak şöyle böyle uyabilecek bir sistem bulabildi. Sonra, üzüntüyle şunu fark etti; Bir daire üzerinde dönen daireler sisteminden çıkarılabilecek bir eğri Keplerin hesaplarda kullandığı sınırların dışına çıkıldığında Tycho’nun Mars gezegenin konumları ile ilgili gözlemlerine uymuyordu.
Tycho’nun gözlemleri ile Keplerin hesapları arasındaki uyuşmazlık 0,133 derece kadardı.(bu açı bir saat yelkovanın 0,02 saniyedeki yer değiştirmesi kadardır).Tycho bu küçük açı kadar hata yapmış olamazmıydı? Bir kış gecesinin soğuğu parmaklarını uyuşturmuş veya gözlem alanını bulandırmış olamazmıydı? Kepler, Tycho’nun metodunu ve ölçmelerdeki zahmet ve dikkatinin biliyordu. Tycho bu küçük açı kadar bile hata yapmış olamazdı. Böylece Tycho’nun gözlemlerine dayanarak, Kepler kendi hazırladığı eğrileri reddetti. Bu Tycho’nun denel becerikliliğine ne büyük saygıydı!
“Bu 8’lik açıya rağmen yinede bir evren teorisi kurulabilirdi” diyerek Kepler yine çalışmaya kuruldu. Düzgün hareket hakkındaki eski ve saygıdeğer inançları bir yana bırakarak, güneş etrafında dönerken bir gezegenin hızın değiştirebileceği düşüncesini dikkate almaya başladı. İşte böylece Kepler ilk büyük buluşunu yaptı. Güneşten gezegen uzanan bir doğru parçasının eşit zaman aralıklarında eşit alanlar taradığını gördü. Bu buluşu, bugün 2. Kepler kanunu adıyla bilinmektedir.
Keplerin eşit alanlar kanunu, Mars, yörüngesi boyunca değişen hızla döner. Güneşe en yakın olduğu zaman hızı en büyüktür. Kepler eşi,t zaman aralıklarında(t2-t1=t3-t4), güneşten gezegene uzanan eşit alanlar (alan A = alan B) taradığını bulmuştu.
Bu kanunu bulduktan sonra Kepler, sonunda, gezegenlerin hareketlerini düzgün dairesel hareketlerin bir bileşkesi olarak anlayabilmek gayretlerinde vazgeçti ve birçok oval şekilleri yörünge olarak denemeye başladı. Her gezegen elips şeklinde bir yörünge boyunca hareket ediyor ve güneş bu elipsin odak noktalarından birinde bulunuyordu. Keplerin ne büyük bir sevinç duyduğunu düşününüz. Yıllarca süren gayretten sonra Kepler sonunda gezegenlerin hareketinin açıklayan basit bir eğri bulmuştu.
Kepler bundan sonra bir gezegenin yörüngesinin büyüklüğü ile onun periyodu(Güneş etrafında tam bir devir yapması için geçen zaman)arasında bir bağıntı bulmak için çalışmaya koyuldu. Bir çok denemden sonra, aradığı kesin bağıntıyı buldu: Bütün gezegenlerde, yörüngenin yarıçapı küpünün, periyodun karesine oranı aynıydı. Bu oranı bulduktan sonra, gezegenlerin bu bağıntıya uymakla gösterdikleri düzen dikkate değerdi. R^3/T^2 oranının sabit oluşuna 3. Kepler kanunu denilir.
KEPLERİN 3’NCÜ KANUNU
GEZEGEN
Yörüngenin yarıçapı(A.B.)
T Periyodu
(gün)
R^3/T^2
[(A.B.)^3/gün^2]
R^3/T^2’nin bu günkü değeri(m^3/sn^2
Merkür
0,389
87,77
7,64 x 10^-6
3,354 x 10^-8
Venüs
0,724
224,70
7,52 “
3,352 “
Yer
1,000
365,25
7,50 “
3,354 “
Mars
1,524
689,98
7,50 “
3,354 “
Jüpiter
5,200
4332,62
7,490 “
3,355 “
Satürn
9,510
10759,20
7,430 “
3,353 “
Yörünge ve periyotların çizelgedeki değerleri Kepler tarafından kullanılmış olan sayılardır. Kepler zamanında yarıçaplar yalnız yerkürenin yörüngesinin yarıçapı cinsinden bağıl olarak biliniyordu. Yerkürenin yarıçapına astronomi birimin (A.B.) denir, bu bir uzunluk birimidir. R^3/T^2 oranının hemen hemen sabit değerleri Keplerin 3. kanununu gösterir. Son sütundaki oranlar bu günün duyar ölçümlerine dayanan yörünge ve periyotlarına dayanan yörünge ve periyotlardan hesaplanmıştır.
Bu zafer üzerine Kepler şunları yazmıştı.”…16 yıl önce aranması gerektiğini söylediğim şeyi… onun için Tycho Brahe’ye katıldığım şeyin beklediğimden çok daha derin olan doğruluğunu en sonunda açıklığa çıkardım. Kalıp döküldü, kitap yazıldı; Şimdide okunabilir,gelecek çağlarda da… Allah’ın bir gözlemci için 6000 yıl beklediği gibi bu kitapta bir okuyucu için bir asır bekleyebilir.”
İşte Keplerin 3 Kanunun İfadeleri:
I.Her gezegen, odaklarından birinde Güneş bulunan eliptik bir yörünge üzerinde hareket eder.
II. Güneşle gezegeni birleştiren doğru parçası(yarıçap vektörü) eşit zaman aralıklarında eşit alanlar tarar.
III. R^3/T^2 oranı bütün gezegenler için aynıdır. Eğer bu sabit orana K dersek, bu 3. kanun
R^3/T^2=K halinde yazılabilir.
Ptolemi ve Copernicus’un önerdiği sistemlerinin daireler üzerinde hareket eden başka daireler sisteminin bütün karışıklığı bir yana Keplerin 3 kanunu gezegenlerin yörüngelerini onlardan çok daha doğru olarak gösterir. Bu kanunlar teleskopun bulunuşundan önce yapılmış gözlemlere dayanıyordu.
Kepler, buluşlarıyla astronomiye çok önemli ilerlemeler olanağını verdi. O Tycho Brahe’nin denel verilerle dolu çizelgelerinin basit ve geniş anlamlı bir eğriler ve kurallar sistemi haline getirdi.Keplerin bu sistemi ona “Göklerin Kanun Yapıcısı” adını kazandırdı.

Jüpiter

0 yorum | Devamını Oku...
Jüpiter
Jüpiter, 71370 km ekvator yarı çapı ile Güneş Sistemindeki en büyük gezegendir ve Güneş’e yakınlık bakımından 5. sırada yer alır. Kütlesi yaklaşık olarak dünya kütlesinin 318 katıdır. Bu dev gezegen Güneş çevresindeki turunu 11.86 yılda tamamlar. Çok büyük bir gezegen olduğu için küçük bir teleskopla bile ekvatora paralel olarak uzanan farklı renkteki kuşakları seçilebilir. Jüpiter hakkında ne yazıkki halen kesin bilgiler bulunmamaktadır. Yüzeyi atmosferi ve uyduları hakkında sadce tahminlerde bulunulmaktadır. Bu tahminlere göre çok yoğun bir atmosferi ve de küçük bir çekirdeği bulunmaktadır. Gezegenin içi hakkında yapılan tahminlere göre saf hidrojen veya %1-2 helyum içeren hidrojen ve %1-2 oranında diğer elemanlardan oluşmuştur. Jupiter güneşten aldığı enerjini yaklaşık olarak 2.5 katını çevresine yaymaktadır bunun nedenini gezegendeki gravitasyonel çökmenin hala sürmmesi olarak tahmin edilmektedir. Jupiterin çevresinde 6500 km genişliğinde ve bir kaç km kalınlığında bir halkası bulunmaktadır.
Bu dev gezegen çok büyük bir mağnetik alana sahiptir. Bu alan sayesinde bilinen 16 uydusu bulunmaktadır. Fakat gezegenin uydularının 16 ile sınırlı olmadığı ve başka uydularının da bulunduğu tahmin edilmektedir. Jupiter hakkındaki ilk bilgiler Nasa’nın 70′li yıllarda gönderdiği Pioneer10 ve Pioneer11 uzay sondaları tarafından elde edilmiştir. Fakat Jüpiter hakkındaki en önemli bilgiler 1995 yılında jüpitere ulaşan Galileo uzay sondasından alınmıştır. Galileo’nun gönderdiği bilgiler sayesinde Jüpiterin 4 büyük uydusu (Io, Europa, Ganymede ve Callisto) bulunmuş ve bunlara Galileo uyduları adı verilmiştir. Bu 4 Uydu gezegen ile aynı yönde dönmektedir. Fakat daha sonra bulunan küçük ve gezegene daha yakın olan uydular gezegene zıt yönde dönmektedir. Bu udular içinde en ilginci Europa uydusudur. Dünyadan yapılan incelemelere göre bu uydunun yüzeyinin su buzlarıyla kaplı olduğu ve hiç bir çarpma kraterinin bulunmadığı anlaşılmıştır. Bu uydunu üzerinde yer alan ve değişik yönlerde düzgün olrak uzanan çatlaklar, yüzeydeki buzların attaki sıcak bir deniz üzerinde yüzdüğünün sanılmasına neden olmuştur. Bu da bu uydu üzerinde canlı olabilme olasılığını artırmaktadır.
Özellikleri :
Güneşe Olan Uzaklığı
778.000.000 km
Yarı Çapı
71370 km
Kütlesi
1898 x 10 24 kg
Yoğunluğu
1326 kg/m3
Atmosferik Basınç
—-
Sıcaklığı
110 K°
Görünür Parlaklığı
-2.0 m
Güneş Etrafında Dönme Süresi
11.86 gün
Kendi Ekseninde Dönme Süresi
9.9250 saat
Dönme Hızı
13.07 km/sn
Dünya’dan bakıldığında parlak bir disk biçiminde görünen Jüpiter Venüs’ten sonra en parlak gezegendir. Eski astronomlar bu gezegene , Eski Roma mitolojisindeki tanrıların tanrısı olan olan ve Eski Yunan’ın en büyük tanrısı Jüpiter’in adını vermişlerdir. Kuşkusuz o zamanlar bu adın bu gezegene ne kadar uygun düştüğü bilmiyorlardı. Gerçekten de, bütün gezegenler bir araya gelse gene de Jüpiter’in büyüklüğüne ulaşamazlar.
En büyük Gezegen: Jupiter
Bu dev gezegenin kütlesi Dünya’nın kütlesininn yaklaşık 318 katıdır; çapı da 143.800 km yani Dünya’nın 11 katından az buçuk fazla. Jüpiter’in yüzeyindeki kütlesel çekim kuvveti de Dünya yüzeyindeki yerçekiminin neredeyse üç katını bulur. Hacmi ise Dünyanınkinin .1323 katıdır; yani Jüpiter’in kapladığı uzay boşluğuna 1.323 tane Dünya sığabilir. Buna karşılık Dünya ile karşılaştırıldığında oldukça hafi bir gezegendir ve yoğunluğu suyun yoğunluğundan (1 gr/cm3) biraz fazladır.
Atmosferi ise büyük ölçüde Hidrojen’den oluşmuştur.;ayrıca az miktarda helyum, metan, amonyak, etan, su, karbon monoksit, asetilen içerir. Bu atmosferin en dış bölgeleri, üst üste dizilmiş karanlık ve aydınlık kuşaklarıyla yeryüzünden harika bir gbir görsel şölen seyretmemize neden olur. BASit bir teleskopla bile kolayca ayırt edilebilen bu kuşakların nedeni, amonyak kristallerinden ya da amonyak, hidrojen ve kükürt bileşiklerinden oluşan bulutlar ile çok büyük çaplı meteoroloji olaylarıdır.
Muhteşem kızıl benek: Jüpiter
Jüpiter’in atmosferinde dolanan dev fırtınaların ya da antisiklonların yol açtığı bu meteroloji olayları Dünya atmosferinde gelişen hava olaylarına benzer; ama bunlardan çok daha güçlü ve karşılaştırılmayacak kadar büyük çaptadır.
Jüpiter’in atmosferindeki hava sistemlerinin çoğu sürekli hareket halindedir ve genellikle birkaç gün içinde yerini başka bir sisteme bırakır. Jüpiter’in güney yarımküresinde, bulutların arasından seçilen ve 17. yüzyıldan beri gözlemlenen oval biçimli büyük bir leke vardır. Büyük Kızıl Benek denen bu leke o kadar büyüktür ki, kapladığı alana Dünya kolayca sığabilir.. Bilim adamları bu lekenin bir antisiklon yada yüksek basınç merkezi olduğunu sanıyorlar.Olnlara göre leke, çevresnde saatte 290 km hıza ulaşan rüzgarların dolandığı bir dinginlik ya da durgunluk bölgesidir.
Magnetosfer
Jupiter’in Bulutları
Böylesine çalkantılı bir atmosferle kuşaltılmış olan gezegenin dış katmanları çok soğuktur. Ama bu kesimde -130°C dolayında olan sıcaklık iç katmanlara doğru giderek yükselir ve gezegenin merkezine yaklaştıkça tahminen 25.000°C’yi aşar. Bu sıcaklıkta ve çok yüksek atmosfer basıncıı altında hidrojenin bir metal özelliği kazanarak çok iyi bir elektirik iletkenine dönüştüğü biliniyor. Nitekim bu bölgedeki elektirk akımlarının Jüpiter’in atmosferinde büyük çaplı gök gürültülerine ve şimşeklere yol açtığı sanılmaktadır. Üstelik Jüpiter’in atmosferinde büyük çaplı gök gürültülerine ve şimşeklere yol açtığı sanılmaktadır. ÜStelik Jüpiter büyük bir hızla döndüğü için çevresinde çok güçlü bir magnetik alan oluşur. Magnetosfer denen bu magnetik alan gezegenin çevresinde yer alan 7 milyon kilometreden daha ötelere kadar uzanır.
Jupiter’in Gönderdiği Radyo Sinyalleri(DAM)
Jupiter’in Aura’sı
Jüpiter, Güneş’ten aldığı enerjinin neredeyse iki katı kadar enerji yayar. Bu enerjinin büyük ölçüde gezegenin iç kesimlerinde oluşan ve konveksiyon akımlarıyla atmosfere taşınan ısıdan kaynaklandığı sanılıyor. Jüpiter ayrıca radyo dalgaları da salar. Bu radyo dalgalarının kaynağı , gezegenin magnetik alanına yakalana protonlar, elektronlar ve iyonlar gibi elektirik yüklü parçacıklardır. Gene bu parçacıklar nedeniyle gezegenin çevresinde, Dünya’nın çevresindeki VAN Allen Kuşakları’na benzeyen ışınım kuşakları , kutuplarında da kutup ışıkları ile elektrik fırtınaları oluşur.
JÜPİTER NASIL KEŞFEDİLDİ?
1970′lerde NASA ,Jüpiter’in yakınından geçen bir dizi uzay aracı göndermiş ve bunların Dünya’ya ilettiği verilerle bu gezegene ilişkin bilgilerimiz büyük ölçüde artmıştır. 1973′te Pionerr 10, 1974′te de Pionerr 11, Jüpiter’in yakınında geçerek gezegenin magnetik alanının varlığı ortaya koydu. Voyager 1 il Voyager 2 ise 1979′da gezegenin çevresindeki halka sisteminin ilk görüntülerini Dünya’ya gönderdi. Daha önceleri bilinmeyen bu halkalar yaklaşık 1 km kalınlığındaydı ve mikroskobik madde parçacıklarından oluşmuştu.
(bu konuda ve Jupiter uyduları ile ilgili ayrıntılı bilgi için tıklayın)
Galileo Uzay Uydusunun çektiği, Jupiter’in uydusu IO
JUPİTER’İN ÇEKİMİ:
Uydusu Ganymade böyle bir Jupiter manzarasına sahip
Güneş Sisteminin en büyük gezegeni olan Jupiter’in öbür gökcisimleri üzerindeki çekim etkisi son derece güçlüdür. Hatta bu gezegenin uydulardan bazılarının, Güneş’in çekim alanına yakalanan küçük gezegenler olduğu sanılmaktadır. Truva Grupları olarak bilinen iki küçük gezegen grubunu bulundukları yerde tutan da Jupiter’in kütlesel çekim kuvvetidir. Jupiter’in çekim etkisi kuyrukluyıldızları yörüngelerinden saptırıp, Güneş’e yaklaştıracak kadar güçlüdür. Nasa, bilimadamları Güneş Sisteminin dış gezegenlerini keşfetmek üzere ilk Voyager uzay aracını fırlattıklarında, bu racın yörüngece yol almasını sağlamak için Jüpiter’in kütlesel çekim kuvvetinden yararlanmışlardı.
Jupiter ile ilgili bilgiler elbette bu kadarla sınırlı değil. Bize bu kadar muhteşem görüntüler hediye edeni keşfetmeye devam…
JÜPİTER’DEKİ ÇARPICI GELİŞMELER
NASA’nın asıl amacı şu an jüpiterin yörüngesinde bulunan cassini uzay aracını 2004 yılında jüpitere indirmek.Ama NASA Jüpiter’in yörüngesindeki uzay aracından Jüpiter’in fotoğraflarını çekmesini istedi.Gelen sonuçlar herkesi hayretler içinde bıraktı…Jüpiter’de yavaş yavaş atmosfer oluşumu başlamıştı.

Satürn (Saturn)

0 yorum | Devamını Oku...

SATÜRN (Saturn) Güneşe uzaklığı: 1343 1425.5 1509 Mio km
Yörüngesel dışmerkezlilik: 0.056
Yörüngesel eğiklik: 2.50
Eksensel eğiklik: 26.40
Çap: 120.500 km
Kurtulma hızı: 35.4 km/sn
Kütle: 95 (Yer = 1)
Hacim: 744 (Yer = 1)
Yoğunluk: 0.7 (su =1)
En yüksek kadir: 0.3
Dolanım süresi: 29.5 yıl
Eksensel dönme: 10 s 14 dk
Kavuşum dönemi: 378.1 gün
Uyduları: 17 tane Pan, Atlas, Prometheus, Pandora, Janus, Epimetheus, Mimas, Encaladus, Tetyhs, Telesto, Calypso, Dione, Rhea, Titan, Hyperion, Iapetus, Phoebe
Gözlem koşulları:Güneşe Jüpiter’den daha uzak ve biraz daha küçük olduğu için Saturn daha sönük görülür. Yaklaşık12.5 ay olan kavuşum dönemi nedeniyle yılın büyük bir bölümünde gökyüzündedir. Yörüngesinde çok yavaş ilerlediği için aynı takım yıldız içinde 2 yıldan daha uzun süre kalır. Satürn’ün halkaları orta boy teleskoplar ile ayırt edilebilir. Her 15 17 yılda bir Dünya Satürn’ün halkalarını düzleminden geçer bu durumda halkalar görülemez. Satürn’ün uydularından sadece Titan ve Rhea orta boy teleskoplar ile görülebilir.
Eski zamanlarda bilinen en dış gezegene, Jüpiter’in babası Satürn’ün ismi verilmişti. Jüpiter kadar parlak olmayan bu gezegenin renginin sarımtıraklığı ona sanki kurşundanmış gibi bir hava verir. Ayrıca yıldızlara göre çok yavaş hareket etmektedir; bu yüzden ona hain sıfatını yakıştıranlar çıkmıştır. Ancak bir teleskopla bakıldığında, hiç tartışmasız gökyüzündeki en güzel cisim odur.
Onu benzersiz yapan halkalarıdır. Bugün bütün devrelerin halka sistemleri olduğunu biliyoruz; ancak hiçbiri Satürn’le yarışamaz. Bu halkalar, ilginin gezegenin kendisinden sapmasına neden olur. Zaten, yüzey şekillerinin etkileyici bir tarafı olmadığı da bir gerçek. Satürn temelde Jüpiter’e benzer; onun da bulut kuşakları ve lekeleri vardır, ancak gözlemlenebilecek etkinlik çok daha azdır.
Geçtiğimiz yüzyılda bile, Jüpiter ile Satürn’ün birer minyatür yıldız olduğu fikri hakimdi. R.A Proctor’un 1882 yılında yazdığı, Satürn ve Sistemi adlı kitabından alınan şu bölüme bir bakalım:
“Gezegenin yüz binlerce kilometre kare genişliğindeki yüzeyi içsel güçler tarafından yarılmış olmalıdır. Aşağıdan çıkan kuvvetli su buharı çok yükseklere kadar fışkırarak ya gezegenin yüzeyini örten bulut katmanıyla birleşiyor ya da kendi bir bulut kümesi oluşturuyordur. Bu küme, aşırı büyüklüğü veya kendini oluşturan maddelerin etrafını çeviren diğer bulutlarınkinden farklı oluşuyla ayırt edilebilir. Böyle bir oluşum Jüpiter üzerinde, Fransa kadar büyük bir kaplayabilirken; iş Satürn’e gelince alan, Rusya kadar olabilir ki bu da bizim en güçlü teleskopumuzla fark edebileceğimiz bir büyüklüktür. Bu durumda, iki gezegen de görünürde sakin bir tavır sergilerken, aşağıda yani yüzeylerinde kargaşanın en büyüğü yaşanıyor olabilir. Hepsi Yorkshire büyüklüğünde binden fazla farklı bölge olsa, tüm yüzey o sakin halini bırakıp kaynayan metale benzer bir görüntü alabilir; ancak bu tür bölgelerin üzerinde oluşacak büyük bulut kütleleri, alttaki yüzeyin hareketliliğini kapatıyor olabilir. Bu durumda en güçlü teleskoplarımızla bile en ufak bir değişim belirtisi göremeyiz. Ve Satürn bu arada biz görmeden daha da çalkantılı bir hal alıyor olabilir.”
Hiçbir şey gerçeğe bundan daha uzak olamaz; ancak Proctor’un, içinde bulunduğu koşullarda böyle bir tablo çizmesi de son derece normal. Satürn, Jüpiter’den oldukça küçüktür; çapı ekvatorda 120.500, kutuplarda ise 108.750 km kadardır. Güneş ile arasındaki mesafe de bayağı uzaktır. Güneş’ten ortalama uzaklığı 1.425.500.000 kilometredir; bu da Dünya’ya hiçbir zaman 1.200.000.000 kilometreden fazla yaklaşamayacağı anlamına gelmektedir. Dolanım hızı saniyede 9,6 kilometre; dolanım süresi ise 291/2 yıldır. Bu Satürn’ün neden gökyüzünde yavaş hareket ediyor gibi göründüğünü açıklıyor. Kendi ekseni etrafında dönüş hızı yüksektir (101/4 saat); dolayısıyla bir Satürn yılında, 25.000 Satürn günü vardır. Ayrıca dönüş hızı, gezegenin her yerinde eşit değildir; Jüpiter’de olduğu gibi, ekvatorda hızlı; kutup bölgelerinde ise daha yavaştır.
Satürn, Jüpiter dışındaki diğer gezegenlerin hepsinden çok daha büyüktür. Satürn’ün hacmi Dünyanınkinin 700 katıdır; oysa yoğunluğu çok düşük olduğundan kütlesi sadece 95 kat daha fazladır. Aslında gezegenin tümünün yoğunluğu, sudan azdır. Demek istediğim, uygun bir okyanus bulup Satürn’ü içine bırakacak olsanız, yüzecektir. Kurtulma hızı yüksekken (35,4 km), yüzeyde kütle çekim kuvveti düşüktür. Kütle çekimi, sadece cismin kütlesine bağlı değildir; cismin büyüklüğü de önemli bir faktördür. Eşit kütleli iki cisim düşünelim; küçük ve dolayısıyla daha yoğun olanın yüzey çekimi daha güçlü olacaktır. Bunun nedeni, onun üzerinde duracak bir gözlemcinin, kürenin merkezine daha yakın olacak olmasıdır. Gazlı yüzeyinde birinin dikelebileceği düşünülemez ama böyle birşey mümkün olsaydı Dünya üzerinde 90 kilo gelen bir kişinin ağırlığı Satürn’de 100 kilo kadar olacaktır. Güneş sisteminde bir Dünyalının kendini, rahatsız edecek kadar ağır hissedeceği tek gezegen Jüpiter’dir.
Satürn yapısal olarak Jüpiter’den pek de farklı değildir. Ancak çekirdeğindeki sıcaklık biraz daha düşüktür; bu değerin 15.000*C (27.000.000*F) kadar tahmin edilmektedir. Yapılan son teorik çalışmalar, çekirdeğin katı kısmının Dünya’dan daha büyük olduğunu göstermektedir. Çekirdeğin üzerinde sıvı metalik hidrojenden oluşan bir katman; onun üzerindeyse sıvı moleküller hidrojenden oluşan bir katman vardır. Sonra da sıra üst bulutlarını bizim de gördüğümüz atmosfere gelir. Bulutlardaki helyum oranı sadece yüzde 6 kadardır; gerisi sizin de tahmin edebileceğiniz gibi esas olarak hidrojendir. Satürn, Güneş’e Jüpiter’den çok daha uzak olduğundan, üst bulutlarının Jüpiter’inkilerden daha soğuk olması beklenir; nitekim öyledir de. Buradaki sıcaklığın -180*C yani -240*F kadar olduğu sanılmaktadır. Üst atmosferdeki amonyağın büyük bir kısmı donmuş haldedir. Ayrıca yapılan spektroskobik gözlemlerde donmuş metana da rastlanmıştır ki, metan kolay donan bir gaz değildir.
Gezegenin üzerinde bir şeyler görmek istiyorsak, iyi sayılabilecek bir teleskop kullanmamız gerekir. Satürn’ün, Jüpiter’in sakin zamanlarını hatırlatan bir görüntüsü vardır; ancak sonuç itibarıyla Satürn daha iyi huyludur. Kuşaklar yuvarlak hatlıdır; ekvator bölgesi genellikle parlak krem renklidir; Jüpiter’in Kızıl Benek’iyle karşılaştırılabilecek herhangi bir oluşum da yoktur. Kutuplar genellikle loştur ve hiçbir yerinde canlı renklere rastlanmaz.
Satürn de Jüpiter gibi etrafa Güneş’ten almış olabileceğinden çok daha enerji yayar. Ancak Jüpiter’e göre küçük olan Satürn’ün oluşumundan bugüne soğumak için yeterli zamanı olmuştur; dolayısıyla bu, Jüpiter’inkinden farklı bir nedene dayanıyor olabilir. En çok kabul gören görüş, sıcaklığın sıvı helyum damlacıklarının daha az yoğun hidrojenin içinden geçerek aşağıya, çekirdeğe doğru hareket etmeleri sonucu, çekimsel olarak oluştuğudur. Bu açıklama tatminkâr değil; ancak bugüne kadar daha iyisini yapan da çıkmadı.
Büyük patlamalar nadiren görülür; ancak ekvator bölgesi civarında ara sıra beyaz beneklere rastlandığı olur. Bunlardan ilk kayda geçeni 1876 yılındakilerdir; 1903’te bir tane daha görülmüştür. Bir sonraki olan 1933’teki öncekilerden çok daha etkileyiciydi. Bu beneği, o yılın Ağustos ayında keşfeden kişi amatör bir gözlemci olan W.T. Hay’di; bu İngiliz, bugün sahne ve sinema komedyeni olarak hatırlanan ünlü Will Hay’den başkası değildir. Bu olay şöyle gelişti: Beyaz benek yavaş yavaş uzadı; üzerinde bulunduğu alanın rengi ise koyulaştı. Baş tarafı belirsizleşirken, arka tarafı keskin hatlı bir şekil aldı. Kraliyet Gök BilimcisiSir Harold Spencer Jones, bu durumu “gördüğümüz yüzeyin altında meydan gelen bir volkanik patlama sonucu püsküren bir miktar madde, kendinden daha hızlı hareket eden bir hava akımıyla karşılaştı; onlar akım ile ileri taşınırlarken, sonradan püskürmeye devam eden maddeler de arka ucu oluşturdular.” diye açıklamıştı. Leke zamanla soluklaştı; birkaç ay sonra da gezegenin çevresinde uzanan parlak bir alandan başka bir şey değildi; sonra da tamamen kayboldu.
1960’ta görülen beyaz benek önceki kadar çarpıcı değildi; ancak gezegeni gözlemleyenler 1990 yılında çok zevkli anlar geçirdiler. Eylül ayının 25’inde, Amerikalı bir amatör olan Stuart Wilber, eskileriyle hemen hemen aynı boylamda yeni bir beneğin parladığını gördü. Daha sonra varlığı doğrulandı; zaten görülmemesi gibi bir şey söz konusu değildi. Daha sonra yaşananlar, alışıldık sırayı izledi. Benek, güçlü ekvator rüzgârlarının etkisiyle birkaç gün içinde yayıldı ve 14.500 km uzunluğunda bir bulut görünümünü aldı. Ekim’in ortalarına gelindiğinde, tüm ekvator boyunca uzanan parlak bir bölge olarak görünüyordu. Parlaklığı gün be gün soldu; birkaç ay içinde yine her şey normale dönmüştü.
Burada ilginç bir durumla karşılaşıyoruz. Elimizde beyaz beneklerin 1876, 1903, 1933, 1960, 1990 yıllarında görüldüklerine dair kayıtlar var. Görünüşlerin arasında geçen süre, sırayla 27 yıl, 30 yıl, 27 yıl ve yine 30 yıl. Bu Satürn’ün dolanım süresi olan 291/2 yıla çok yakın. Rastlantı peşinde koşmaktan hep sakınmış biri olduğum halde, bana sanki ikisi arasında Bir bağıntı varmış gibi geliyor. Bu durumda gözlemciler, 2020 yılı civarında bir beklenti içine girecekler. Benekler, Satürn’ün gördüğümüz yüzeyinin altında hüküm süren koşullar hakkında bilgi verici oldukları için önemliler. Ayrıca dönüş süresinin ölçülmesine de yardımcı oluyorlar.
Dolayısıyla yapılacak en akıllıca iş, göz alıcı halkalara fazla takılmamak ve kürenin kendisini sürekli gözetim altında tutmaktır. İyi aletlere sahip bir amatör de bu işi oldukça rahat bir şekilde kıvırabilir.
Ancak, Satürn’ü bu kadar görkemli yapan da halkalarıdır tabii ki. Küçük teleskop ile bile görülebilen halkalar, on yedinci yüzyıldan beri bilinmektedir. Ne olduklarını tam olarak anlayabilecek kadar net bir şekilde olmasa da, onları ilk gören Galileo’dur. Satürn’ü üçlü gezegen zanneden Galileo, birkaç yıl sonra gezegenin normal görünmesine ve yalnız oluşuna bir anlam verememiştir. Galileo hiç öğrenmemiş olsa da, biz bugün bu sorunun cevabını bulmuş durumdayız.
Galileo gözlemeye başladıktan kısa bir süre sonra halka sistemi Dünya’ya göre yan durmaya başladı. Bu konumda Galileo’nun ilkel teleskobuyla onu görmek imkânsızdı.
1659 yılında, büyük bir ihtimalle zamanının en iyi gözlemcisi olan Christiaan Huygens, ünlü anagramını (o zamanın astronomlarının kullandığı Latince şifreli bir yazı) yayınladı. Bu anagramda, Staürn’ün çevresinde tutulum dairesi boyunca uzanan ve hiçbir yeri gezegenin kendisine değmeyen yassı bir halka bulunduğu söyleniyordu. O ana kadar söyledikleri doğruydu; ancak kuramına, inanılmayacak kadar çok kişi karşı çıktı. Söz gelimi cizvit olan Fransız matematikçi Honoré Fabri, Satürn’ün garip görüntüsünün nedeninin, dört uydu olduğunu iddia ediyordu. Bu uydulardan ikisi, karanlık ve gezegene yakınken, diğer ikisi parlak ve gezegene uzaktı.
Huygens’in halkalarının bütün gökbilimcilere kabulü yıllar aldı. Bu dönemde yapılan çizimlerden bazıları oldukça gariptir; ancak kullanılan teleskopların kalitesi düşünülürse, bu pek de anormal değil.
İkisi parlak bir loş olmak üzere üç ana halka vardır. En dıştaki parlak halka 14.500 km genişliğindedir. İçeri doğru gidildiğinde, G.D. Cassani tarafından 1675 yılında keşfedilen ve bu nedenle Cassini Bölümü olarak anılan bir aralık gelir. Genişliği 4000 km kadar olan bu aralık, A halkasının genişliği yaklaşık 25.700 km olan parlak B halkasından ayırır. Huygens’in tarif ettiği halka, A ve B halkalarının bir birleşimidir.
A ve B halkaları birbirlerine benzemezler. B daha parlaktır ve geçirgenliği daha azdır. Aradaki farklı kaliteli küçük bir teleskopla bile görebilirsiniz. Halka sistemi biraz olsun eğik olduğunda 8 santimlik mercekli teleskopla bile Cassini Bölümü’nü görmekte zorlanılmaz. A halkasının içinde de dar bir aralık vardır; J.F. Encke tarafından keşfedildiği için onun adı verilen bu aralığı görmek çok daha zordur. Özellikle halkaları yandan gördüğümüz zamanlarda onu fark etmek zorlaşır.
B halkası ile gezegen arasında üçüncü bir halka vardır. C halkası Crêpee Halkası ve Karanlık Halka adlarıyla da bilinir. Onu ilk olarak 1850 yılında birbirinden bağımsız iki gözlemci, Amerika’da W. Bond ve İngiltere’de W.R. Dawes, görmüştür. Rahat bir şekilde görülemeyen bu halka yarı geçirgendir. Genişliği ise 19.300 km kadardır.
Uzay Çağı’ndan çok önce, öncekiler kadar net görülemeyen başka halkalar görenler de çıkmıştı. Bunlardan CrépeHlkası’ndan daha içeride olduğu iddia edilen halkaya D Halkası adı verilmiştir. Fransız gök bilimci G. Fournier’in 1907 yılında gördüğü ve ana sistemin dışında olan bir başkasına da, kafa karıştıracak biçimde yine D Halkası denmiştir. Bu konu çok sonra, Pioneer ve Voyager uzay araçlarının uçuşlarından sonra açıklığa kavuştu.
Satürn’de büyüleyici gölge etkileri görülür. Küreden yansıyan ışık, halkaları aydınlatarak onları kırıkmış gibi gösterir. Ayrıca halkaların Satürn’ün üzerine düşen gölgeleri çok rahat bir şekilde görülür, dikkatsiz gözlemciler yanılarak genellikle bu gölgeleri kuşak zannederler.
Halka sistemi daireseldir; ancak biz ona tepeden bakamadığımızdan elipsmiş gibi görürüz. Sistemin toplam çapı 272.000 km kadardır ama halkaların kalınlığı çok incedir. Bu durum, 1966, 1980 ve 1995 yıllarında olduğu gibi yan durduklarında görmek neredeyse imkânsızdır. Daha açık bir şekilde söyleyecek olursak, Dünya halka sistemiyle aynı düzleme girdiğinde, Güneş de aynı şeyi yaparsa halkaları görmek mümkün olmaz; çünkü bu durumda sadece halkalardan en dışta kalanının kenarı güneş ışığı alabilmektedir. Halkaların tamamen kaybolduğunu iddia edenler de çıkmıştır; ancak gerçek böyle değildir. Halkalar, sırayla 13 yıl 9 ayda ve 15 yıl 9 ayda bir yan konuma geliyorlar. Bu eşitsizliğe Satürn’ün yörüngesinin dışmerkezliliği neden oluyor. Kısa olan aralık boyunca Satürn’ün güney kutbu Güneş’e doğru eğik oluyor; bu durumda kuzey yarım küre halkaların ardında kalıyor. Satürn, günberi noktası civarındayken göreceli olarak en hızlı hareket ettiği zamanları yaşıyor. Daha uzun olan aralık boyunca ise kuzey kutbu Güneş’e dönük oluyor; bu sefer de güney yarım küre görülemiyor. Bu devre içinde Satürn, günöte noktasından en yavaş hızıyla geçiyor. Halkalar, Satürn’ün ekvator düzleminde bulunuyorlar; ancak ekvator düzlemi, yörünge düzlemine göre 261/2*kadar eğik.
Ana halkalardan A ve B’nin yekpare ve katı bir görüntüsü vardır; dolayısıyla teleskop ile bakan ilk gözlemcilerin onları sert levhalar zannetmeleri son derece doğaldır. Tabii herkes aynı fikirde değildi; söz gelimi J. Cassini1705’te, halkaların, Satürn çevresinde dönmekte olan küçük parçacıklar olduğunu iddia etmişti. Ancak bu oturaklı tahmin, on dokuzuncu yüzyıla kadar doğrulanmadı.
Fransız Edouard Roche 1848 yılında, kütle çekimi yok denebilecek kadar az olan bir cismin, bir gezegene (veya başka bir cisme) çok yaklaşması durumunda parçalanacağını kanıtladı. Bu tehlikeli alanın kenarı Roche sınırı olarak bilinir. Sınırı, ilgili gezegenin büyüklüğü ve kütlesi beliler. Halkalar, Satürn’ün Roche sınırı içindedirler; bu da katı veya sıvı olmaları halinde parçalanacakları anlamına gelir. Bu iddia, 1875 yılında James Clerk Maxwell tarafından matematiksel olarak kanıtlanmıştır. Ondan yirmi yıl sonra J.E Keeler, spektroskop kullanarak yaptığı gözlemlerden, halkaların iç kısımlarının Satürn’ün çevresinde dıştakilere göre daha hızlı dönüyor olduğu sonucu çıkardı. Tabii bu da Kepler Yasası’na uygun bir durumdu. Yani her bir parçacık kendi başına birer aycıkmış gibi davranıyordu.
1979’dan önce, halkaların az çok yassı ve düzgün olduğu varsayılıyordu. Uzay araştırmaları sonucunda gerçekte öyle olmadığı anlaşıldı. İlk baskını Pioneer 11 yaptı. Daha önce de bahsettiğimiz gibi, bu sonda 1973’te Jüpiter’i incelemek üzere fırlatılmıştı. Satürn, önceden planlanmış bir hedef değildi; ancak bu karşılaşma çok yararlı oldu; çünkü o zamanlar hiç kimse sondaların, Satürn’ün çevresindeki enkaz ile çarpışmanın yol açabileceği tehlikenin büyüklüğü konusunda bir fikre sahip değildi. Pioneer’ın bulutların 21.000 km kadar üzerinden geçmesi planlanmıştı; öyle de oldu. Böylece hayatta kalma şansı yüzde 99’dan yüzde 1’e düşmüş oldu. Neyse ki hiç yara almadan kurtuldu.
1980 ve 1981 yıllarında, 1979’daki Jüpiter ziyaretlerini bitiren ilk Voyager, Satürn’e geldi. Bu iki Voyager bibirinin eşiydi ancak Jüpiter’den ayrıldıktan sonra farklı roller üstleniyorlardı. Voyager 1 sadece Satürn’ü değil, gezegenin en büyük uydusu Titan’ı incelemek üzere programlanmıştı. Titan’ın bir atmosfere sahip olduğu biliniordu; bu bakımdan özel ilgiyi hakeden bir uyduydu. Sonda, Titan’ı incelemek için tutulum dairesi düzleminden ayrılacaktı; bu durumda da ileride başka bir gezegenle karşılaşma olasılığı kalmıyacaktı. Plan işlerse Voyager 2, Titan’la ilgilenmeyecek ve önce Neptün’le sonra da Uranüs’le buluşmak üzere yoluna devam edecekti. Ancak Voyager 1’in başarısız olması durumunda, Voyager 2’nin Titan’ı incelemesi gerekecekti. Bu durumda da iki uzak devi göremeyecekti. Voyager 1, üzerine düşeni kusursuz bir şekilde yerine getirdiğinde Görev Kontrol Merkezi’ndeki rahatlamayı tahmin edebilirsiniz.
Satürn’ün kendisinin çok güzel fotoğrafları elde edildi. Gezegenin üzerinde kırmızımsı ve kahverengimsi benekler bile vardı. Ekvatora simetrik olarak esen rüzgârın hızı saatte 1500 km’yi bulur ki, bu Jüpiter rüzgârlarından bile daha hızlı olduğunu gösterir. Manyetik alanı Jüpiterinkinden yirmi kat daha zayıftır; ancak bu haliyle bile Dünya’nınkinden bin kat güçlüdür. Manyetik ekseninin, dönme ekseniyle çakıştığı belirlenmiştir. Yani bu durumda, gezegende pusulaya bakılacak olursa, ibre tam kuzeyi gösterecektir. Kutup ışıklarına da rastlanmaktadır; ama tahmin edebileceğimiz gibi Jüpiter’dekilere çok daha zayıf olacaktır.
Voyager 1 Satürn’e doğru yaklaştığında halkaların kimsenin ummadığı kadar karmaşık oldukları anlaşıldı. Binlerce ufak halkadan ve küçük boşluklardan oluşuyorlardı. Bir bütün olarak ise daha önce görülmüş hiçbirşeye benzemiyorlardı. Rahat görünen ayrımların ortaya çıkış nedeninin, uyduların, özellikle de Voyager’lardan önce en içteki olarak bilinen Mimas’ın, çekim gücü olduğu zannediliyordu. Bu belirgin birkaç boşluk için geçerli olabilirdi; ancak sistemin karmaşıklığı, tek nedenin, uyduların tedirgisi olmayacağını gösteriyordu. Satürn’ün halkalarının hareketleribugün bile tam olarak açıklanabilmiş değildir.
Cassini Bölümü boş değildir. Orada da halkacıklar veuzaydagörülen türden parçacıklar vardır. B Halkası’nda, merkezden çevreye doğru yayılan, yaklaşık 15.000 km uzunluğunda garip çubuklar görünür. Bu çubuklar, halka, gezegenin gölgesinden çıktıktan birkaç saat sonra kaybolurlar. Aslında böyle bir büçüm oluşturamamaları gerekir. Hatılarsanız Kepler Yasası şöyle der: İç kısımdaki parçacık, kendine göre dışarıda olan parçacıktan daha hızlı hareket eder. Dolayısıyla merkezden dışarıya doğru çubuk şeklinde bir oluşumun bulunmaması gerekir. Ancak oradalar ve net bir şekilde görülebiliyorlar. Benim bugünkü fikrimi soracak olursanız, bu çubukları, manyetik güçler tarafından halka sisteminin düzleminden çıkartılan parçacıklar oluşturuyor ve yükselen bu parçacıklar daha sonra manyetik alan hatları tarafından süpürülüyor. Şu anda en mantıklı açıklama bu gibi görünüyor. Dünya’dan gözlem yapan kişilerin yaptığı, eski çizimlere baktığımızda, bazılarıda bu çubukların çizili olduğunu görüyoruz.
Yeni halkalar da bulundu. Daha önce D Halkası adı verilen ve bulutların hemen üstüne kadar uzandığı söylenen halka, gerçek bir halka sayılamazdı; dağınık parçacıkların bir alandı. Ancak A Halkası’nın hemen dışında yeni bir halka bulunduğu görüldü. Büyük olasılıkla Fournier’in gördüğü halka olan bu halkaya resmen F Halkası adı verildi. F Halkası’nın örülmüş ipliklere benzeyen garip ve karmaşık bir yapısı vardı. Seyrek yapılı G Halkası ise büyük uyduların en içte olanı Mimas’la aynı yolu kullanan iki küçük ayın yani Janus ve Epimethus’un yörüngesine kadar olan bölgenin needeyse tamamını kaplıyordu. Son olarak bir de E Halkası vardı. G Halkası’ndan bile daha seyrek olan bu halkanın en parlak olduğu yer, ikinci büyük uydu olan Enceladus’un yörüngesinin hemen içinde kalan bölümdü.
Halka parçacıklarını Voyager bile net olarak gösteremedi. Ancak büyüklükleri, çakıl taşıyla birkaç metre çaplı buzblokları arasında değişiyor gibi görünüyordu. Ayrıca halkaların bulunduğu düzlemin 65.000 km aşağısına ve yukarısına kadar uzanan, seyrek yapılı bir hidrojen bulutuna da rastlanmıştı. Halka parçacıklarının bileşimine gelince, görünüşe göre parçacıklar basit su buzundan oluşuyorlardı.
Uzay Çağı’ndan önce Satürn’ün dokuz uydusu olduğu zannediliyordu. Satürn ailesi, Jüpiter’inkinden hayli farklıydı. Satürn’de dört büyük ve bir düzine küçük yerine, bir büyük (Titan) ve birçok ortaboy uydu vardı. Uydularından Rhea ve İapetus’un çapı 1500 km; Dioni ve Tethys’inki ise 1100 km kadardır. Mimas, Enceladus ve Hyperion’un çapları ise 270 km ile 480 km arasında değişir. Önceden bilinen son uydu olan Phobe’nin çapı ise topu topu 225 kilometredir. Satürn’den ortalama 13.000.000 km uzakta olan bu uydu, ters yönde hareket etmektedir; bu durum onun eski bir asteroit olduğu konusunda şüpheye yer bırakmaz. Ondan sonra 9 yeni uydu daha bulunmuştur. Bunlardan Pan, Atlas, Prometheus, Pandora, Epinetheus ve Janus, Satürn’e Mimas’tan daha yakındır. Telesto ve Calypso, Tethys ile aynı yörünge üzerinde hareket etmektedirler. Dione’nin ise Helene adlı bir Troya’lısı vardır. Bunlardan başka birkaç küçük uydu daha olduğu ve toplam uydu sayısının yirminin üzerine çıkacağı düşünülmektedir. Yeni keşfedilen uydulaın hepsi çok küçüktür; aralarında çapı 150 kilometreden büyük olan tek uydu Epimetheus’tur.
Saptanan son uydu olan Pan, A Halkası’nın ortasındaki Encke Bölümü’nün içinde hareket etmektedir. Prometheus ile Pandora’ya çoban uyduları denmektedir, çünkü F Halkası’nın iki kenarında durarak onu sabit bir şekilde tutarlar. Prometheus’un yörüngesi halkanın biraz dışından geçer; dolayısıyla halkayı oluşturan parçacıklardan daha yavaş hareket etmektedir. Bir parçacık diğerlerinden ayrılacak olursa, Prometheus onu yavaşlatarak daha içte bir yörüngeye oturmasını sağlar. Aynı şekilde içeri,Satürn’e doğru yol alan parçacıklar da Pandora tarafından hızlandırılır ve ana halkaya geri gönderilir. Janus ile Epimetheus’un eskiden aynı büyük cisim parçaları olduğu kolayca anlaşılmaktadır. Birçok bakımdan benzerlik gösterirler. Ayrıca dört yılda bir birbirlerine yaklaşırlar; bu sırada yaşanan ikili etkileşimler sonucu yörüngelerini değiştirirler. Uzayda sandalye kapma oyunu oynayan iki ay gibidirler!Küçük uyduların çoğunun şekli biçimsizdir.
Satürn’ün uydularının en büyüğü olan Titan, Ganymede’den sonra Güneş Sistemi’ndeki ikinci büyük uydudur. Küçük bir teleskopla görülebilecek kadar parlaktır. Dürbünle bile gördüğünü söyleyenler olmuştur. 1944’te, bir atmosferi olduğu belirlendei; Voyager’dan önce atmosferin esas olarak metandan oluştuğu düşünülüyordu.
8 santimlik bir mercekli teleskopla Rhea rahatça, Dione ile Tethys ise biraz daha zor görülür. İapetus’un durumu biraz gariptir; uydu Satürn’ün batısındayken, doğusundayken olduğundan çok daha parlaktır. En çok, Rhea kadar parlak görünür; ancak soluk olduğu zamanlarda 8 santimlik teleskobun menzili dışında kalır. Bu garip durum, uydunun G.D. Cassini tarafından 1671 yılında keşfedilişinden beri bilinmektedir. Bu farkın mantıklı tek açıklaması vardır. Gezegenlerin en büyük uydularının çoğu gibi, İapetheus da eşzamanlı dönmektedir. Yani, çevresinde dönmekte olduğu gezegene hep aynı yüzünü göstermektedir. Bunun nedeni gezegenin çevresindeki dolanım süresinin, kendi ekseni etrafında dönüş süresine eşit olmasıdır. Bu süre İapetheus için 79 gündür. Yani batı uzanımında her zaman, yansıtma oranı daha yüksek olan yüzü bize dönüktür.
Voyager 1’in ana hedefi olan Titan, şok yarattı denebilir. Yüzeyinin görülmesini tamamen engelleyen kalın atmosferinin, bol miktarda nitrojenden ve hatırı sayılır miktarda metandan oluştuğu belirlendi. Yüzey basıncı, Dünya’da deniz seviyesindeki basıncın birbuçuk katından daha fazlaydı. Voyager 1, uydunun 6500 kilometre kadar yakınından geçtiği halde tek görebildiğimiz, portakal renkli sis olarak adlandırılabilecek oluşumun üsy katmanıydı. Yüzey sıcaklığı -180*C (-290*F) olarak ölçülmüştü. Bu oldukça önemliydi çünkü metan gazının, Titan üzerinde katı, sıvı veya gaz halinde bulunabileceği anlamına geliyordu. Bu durum, tıpkı H2O’nun Dünya’dan, buz, sıvı su veya su buharı şeklinde bulunabilmesine benziyordu. Bizim denizlerimize pek benzemese de, Titan’da bir çeşit kimyasal maddeden oluşan denizler olabilirdi. Büyük bir olasılıkla da etan ve metanın oluşturudğu bir karışım.
Titan, haytın ortaya çıkmasına olanak vermeyecek kadar soğuk gibi görünüyor olsa da üzerinde, söz gelimi portakal renkli siste, birçok organik maddeye rastlanmıştır. Uyduda hayat için gerekli tüm koşullar varmış gibi durmaktadır. Bu konunun 2004 yılında aydınlığa kavuşması bekleniyor; çünkü uydu üzerine yumuşak iniş yapması planlanan yeni sonda, uyduya o yıl ulaşacak.
Bir konuyu daha belirtmekte yarar görüyorum. Titan’ın kurtulma hızı, bizim Ay’ımıznkiyle aynı gibidir. Ancak Titan, Ay2dan çok daha soğuk olduğundan bir atmosfer tutmayı başarabilmektedir. Çünkü sıcaklık düştüğünde, atomlar ve moleküller daha yavaş hareket ederler bu da kaçma şanslarının azalacağı anlamına gelir. Milyarlarca yıl sonra Güneş daha parlak hale geldiğinde Titan’ın, üzerinde hayatın ortaya çıkmasına olanak verecek kadar ısınacağı düşünülmektedir. Ancak o zaman da, artan sıcaklık spnucu atmosferin kısa süre içinde kaybedecektir.
Bu arada Voyager’ların, o sırada son derece ters bir konumda olan Phobe dışında, bütün büyük uyduların çok güzel fotoğraflarını çktiğini de belirteyim. M,mas’ın buzlu ve kraterli yapısı vardır. Herschel adı verilmiş büyük kraterin genişliği, uydunun çapının üçte biri kadardır. Encaladus, buzlu ve küçük kraterli düz sayılabilecek bi yüzeye sahiptir. Tethys ise neredeyse saf buzdan oluşmaktadır. Üzerinde yer alan bir hendek, uydunun yarısından çoğu boyunca uzanmaktadır. Dione, Teehys’ten azıcıkdaha büyük ama çok daha ağırdır. Yarı kürelerinin parlaklıkları birbirinden farklıdır. Yüzeyinde, birkaç parlak şekil ile iki üç büyük krater vardır. Rhea’nın yüzeyine bakıldığında, uydunun son derece yaşlı olduğu görülür. Neredeyse Jüpiter sistemindeki Callistokadar kraterli bir yapıya sahiptir. Hyperion’un durumu istisnaîdir. Şekli biçimsizdir; büyüklüğü 360 x 280 x225 kilometre kadardır; bir hamburgere benzediği söylenebilir. Satürn çevresinde bir tam dönüş yapması 21,3 gün sürer; ancak bu, kendi ekseni etrafında dönme süresine eşit değildir, yani dönüşü tutulmuş değildir. Yörüngesinde taklalar atarak ilerliyor gibi görünen Hyperion’un, dönüşünün de düzensiz olduğu söylenebilir. Bu uydunun eskiden daha büyük bir gökcisminin parçası olduğu düşünülmektedir; ancak henüz diğer yarının izine rastlanmıştır.
İapetus’un yarı kürelerinden birisi parlak ve kar kadar yansıtıcı, daha çok görünen diğeri ise karatahta kadar koyu renklidir. Kuramcılar burada, benim Zebra problemi olarak adlandırdığım bir sorun ile karşı karşıyadırlar: Zebra siyah çizgili beyaz bir hayvan mı, yoksa beyaz çizgili siyah bir hayvan mıdır? Söz konusu olan İapetus ise bu soruyu cevaplandırabiliriz. Hareketleri ve diğer uyduları üzerindekietkileri incelendiğinde, yoğunluğunun suyunkinden çok da fazla sonucuna varılmıştır. Yani uydunun büyük bölümü buzdan oluşmaktadır. Karanlık bölge ise hâlâ bir bilmecedir. Nedeninin, en dıştaki uydu olan ve elimizdeki tek ve pek de tatmin edici olmayan fotoğrafında koyu renkli ve diğer buzlu uydulara pek benzemiyor gibi görünen Phoebe’den İapetus’a gelen toz olduğu yönünde iddialar vardır. Ancak Phobe ile İapetus birbirlerine 9,5 milyon kilometreden fazla yaklaşmamaktadır.; ayrıca İapetus’un üzerindeki lekenin rengi Phoebe’nin tozlarınınkinden farklıdır. Bu durumda ya geçmişte uyduya bir kuyruklu yıldız çarpmıştır ya da bu koyu renkli madde buzlu kabuğun altından yukarı çıkmıştır.
Jüpiter’in Galilei uydularını gözlemlemeye göre çok daha zor olsa da bu uyduların da tutulmaları, geçişleri ve parçalı tutulmaları gözlemlenebilmektedir. Ancak bu olaylar küçük bir teleskop ile uydular içinde bir tek Titan izlenebilir. Bu pek de hoş bir durum değildir; çünkü küçük uyduların yörüngeleri tam olarak bilinmemektedir. Bu durumda, tutulmaların ve geçişlerin zamanları konuya biraz olsun açıklık getirebilirdi. İkili olaylara da rastlanmaktadır. Söz gelimi A.E. Levin ve L.J. Comrie, 8 Nisan 1921’de Titan’ın gölgesinin Rhea’nın üzerine düşmesi sonucu yaşanan tutulmayı gözlemlemişlerdir.
Pickering, Phoebe’yi, Harvard College Gözlemevi’nin güney istasyonu olan Peru’daki Arequipa Gözlemevi’nin 60 santimlik teleskobuyla keşfetmiştir. Altı yıl sonra yörüngesi Rhea ile Titan’ın yörüngeleri arasında yer alan yeni bir uydu bulunduğunu açıklayan Pickering, bu uyduya Themis adını vermiştir. Ancak bulunduğu açıklandığı andan itibaren varlığından kuşku duyulmayan bu uyduyu bir daha gören çıkmamıştır. Bu durumda hiç var olmadığı da söylenebilir.

Uranüs (Uranus)

0 yorum | Devamını Oku...

URANÜS (Uranus) Güneşe uzaklığı: 2733.6 2868.8 3004 Mio km
Yörüngesel dışmerkezlilik: 0.047
Yörüngesel eğiklik: 0.8 0
Eksensel eğiklik: 98 0
Çap: 51.120 km
Kurtulma hızı: 22.5 km/sn
Kütle: 14.6 (Yer = 1)
Hacim: 67 (Yer = 1)
Yoğunluk: 1.3 (su =1)
En yüksek kadir: 5.6
Dolanım süresi:84 yıl
Eksensel dönme: 7 s 14 dk
Kavuşum dönemi: 370 gün
Uyduları: 15 tane Cordelia, Ophelia, Bianca, Cressida, Desdemona, Juliet, Portia, Rosalind, Belinda, Puck, Miranda, Ariel, Umbriel, Titania, Oberon
Gözlem koşulları: Uranüs hiçbir zaman 6. kadirden daha parlak olmaz. Bu nedenle çıplak gözle ancak olağanüstü açık ve temiz gökyüzü koşullarında bile sadece küçük sönük bir yıldız gibi görülebilir. Küçük teleskoplarla yeşil bir yuvarlak olarak görülür, ayrıntı seçilemez. Uyduları ancak çok büyük teleskoplar ile görülür. 84 yıl süren dolanım süresi ile Uranüs bir takımyıldızdan diğerine çok yavaş geçer. 90′lı yıllar boyunca Yay ve Oğlak takımyıldızlarında olacaktır.
Eski zamanlarda gezegenlerden beş tanesi biliniyordu. Bunlara Güneş ve Ay da eklendiğinde Güneş sisteminin yedi üyesi oldu. Yedi mistik rakamdı, dolayısıyla bundan daha uygun bir sayı da olamazdı. Ayrıca yeni bir büyük gezegen olabileceği pek akla gelen bir fikir değildi. Bu durum, tanınmamış bir amatör gözlemcinin gök bilimi dünyasını sarsan keşfini yaptığı 1781 yılına kadar böyle kalmıştı.
William Herschel, Hanover’da doğmuş ancak genç sayılabilecek bir yaşta İngiltere’ye gelerek org çalmaya başlamıştır. O sıralarda çok gözde bir yer olan kaplıcalarıyla ünlü Bath’e yerleşen Herschel, kısa süre içinde çok ünlü olmuştu. Gök bilimi ile bir hobi olarak ilgilenen müzisyen, aynalı teleskoplar yapıyordu. Ayrıca birinci sınıf bir gözlemciydi. 1781 yılının 13 Mart gecesinde el yapımı teleskoplarından biriyle Gemini takımyıldızını yani İkizler’i oluşturan yıldızları incelerken gördüğü şey bütün hayatını değiştirecekti. Onun sözlerinden alıntı yapacak olursak:
“Gemini takımyıldızı civarındaki yıldızlara bakarken, diğerlerinden daha büyük olan bir tane gördüm. Bu beklenmedik görüntü karşısında onu, Gemini takımyıldızındaki yıldızlarla ve Auriga ile Gemini arasındaki küçük yıldızla kıyasladım, sonuçta hepsinden daha büyük olduğunu gördüm. Bu durumda onun bir kuyruklu yıldız olduğu sonucuna vardım.”
Kuyruklu yıldılar ilginçtir ama az rastlanır değillerdir, dolayısıyla Herschel de bu keşfi karşısında pek heyecanlanmamıştı. Bu cisimden bahsettiği ilk yazının başlığı Bir Kuyruklu Yıldızın Beyanı’ydı. Ve o bu yazıyı yazarken bulduğu şeyin ne kadar önemli olduğunun farkında değildi. Daha sonra cisim üzerinde çalışan matematikçiler cismin yörüngesini belirlediler. Ortaya çıkan yörünge hiç de bir kuyruklu yıldızınmış gibi durmuyordu. Aslında bu cisim, Güneş etrafında bir tam dönüşünü 84 yılda tamamlayan, Güneş’ten ortalama 2.867.000.000 km uzakta olan ve Satürn’den çok daha uzakta bulunan bir gezegendi.
Herschel, cisme İngiltere Kralı III. George’un şerefine Georgium Sidus yani George Yıldızı adının verilmesini önerdi. III. George, Herschel’e Kral’ın Gök Bilimcisi ünvanını vermiş ve ona müziği bir iş olarak devam ettirmesini gereksiz kılan, tüm zamanını gök bilimine adamasına olanak veren bir aylık bağlamıştı. Yabancı gök bilimciler cisme verilen bu isimden pek hoşlanmamış ve hatta kâşifin şerefine Herschel denmesini bile kabul etmişlerdir.Daha sonra, mitolojik sistemin kullanımını yaygınlaştığında, yeni gezegenin adı, göğü temsil eden tanrının anısına Uranüs olmuştur.
Keşiflerin şans meselesi olduğu genel kabul gören bir görüş olsa da bu, düzenli bir şekilde gökyüzünü gözden geçirmekte olan Herschel’e yapılan bir haksızlıktı. Arkadaşı Dr. Hutton’a yazdığı bir mektupta söylediği gibi: “O akşam çok çalıştığım için gözden kaçırdım diyelim, ama ertesi gün farketmeliydim. Teleskobum o kadar iyiydi ki kolayca görülen gezegen yüzeyini bakar bakmaz görebilirdim.” Herschell hiç teleskop yapmamış olsa bile bu yeni gezegenin o günden pek de uzak olmayan bir tarihte farkedilebileceği çok açıktı. En geç yeni yüzyılın ilk yıllarında, Mars ile Jüpiter’in yörüngeleri arasındaki kayıp gezegeni aramakta olan Schörter’in yılıdız polisleri tarafından bulunacaktı.
Uranüs’ü ilk farkedenin Herschel olduğu doğrudur; ama o, gezgeni ilk gören kişi değildir. Daha önceki yıllarda birçok kez kayda geçirilmiştir. İlk Kraliyet Gök Bilimcisi olan John Flamsteed, 1690 ile 1725 yılları arasında Uranüs’ü tam altı kere görmüştür. Normal bir yıldız olduğunu düşünerek pek üzerinde durmayan Flamsteed ona, bir yıldız ismi ( 34 Tauri) bile vermiştir. Keskin gözlü insanlar nereye bakacaklarını bilirlerse, ortalama kadri 5,7 olan gezegeni çıplak gözle kolayca görebilirler.
Uranüs de devlerden sayılabilir. Jüpiter’e veya Satürn’e göre küçük sayılabilir; ancak Dünya’dan çok daha büyüktür. Ekvatoral çapı 51.120 kilometre kadarken, küresel olarak basık sayılabileceğinden kutupsal çapı bu değerden daha düşüktür. Satürn’e göre çok yoğun sayılabilecek Uranüs, sudan yoğundur. Hacimsel olarak Dünya’dan 67 kat büyüktür; ancak kütlesi Dünya’nınkinin sadece 141/2 katı kadardır. Kurtulma hızı saniyede 22,5 kilometredir. Yüzey çekimi ise Dünya’nınkinden biraz daha fazladır.
Bir teleskop ile bakıldığında Uranüs, soluk mavimsi yeşil bir yuvarlak olarak görünür. Esrarengiz hiçbir tarafı yoktur. Bulutların üst kısımları o kadar soğuktur ki, metan donarak altındaki amonyak bulutlarının üzerini kaplayan bir bulut katmanı oluşturur. Metan, uzun dalgaboylu ışıkları emerken mavi ve yeşili emmez; bu da Uranüs’ün niye o renk görüldüğünü açıklamaktadır. Atmosferi hidrojen açısından zengindir; yüzde 15 oranında da helyuma rastlanır.
Uranüs’ü Jüpiter’in veya Satürn’ün küçük bir kopyasıymış gibi görmek son derece yanlıştır. İncelendiğinde onlardan oldukça farklı olduğu görülür. Son kuramlara göre, büyüklüğü tam olarak belirlenememiş olsa da bir çekirdeği vardır. Bu çekirdeğin üzeri, gazların buzlar ile karışımlarından oluşan kalın tabakalarla çevrilidir. Bu tabakalar bulutların üst kısımları kadar soğuklarsa donmuş halde bulunmaları gerekir. Karışımların büyük çoğunluğu bir tür su karışımından oluşuyor gibi görünmektedir. Bu su ayrıca amonyak ve metan ile birleşerek kalın, buzlu bulut katmanlarını da oluşturmaktadır.
Voyager 2 göreve çıkmadan çok önce ortaya atılan bu görüşler, uzay araçlarından elde edilen bilgileri tarafından doğrulandı. Uranüs ile ondan bir dışarıdaki dev olan neptün, ikiz sayılabilirler. Jüpiter/Satürn çifti, Uranüs/ Neptün çiftinden oldukça farklıdır. Ayrıca en dıştaki devler arasında da birçok farklılık vardır. İçsel bir ısı kaynağı olmayan veya en iyi olasılıkla çok güçsüz bir ısı kaynağı olan Uranüs’ün ekseni inanılmayacak kadar eğiktir.
Jüpiter veya Satürn kadar olmasa da Uranüs’ün de hızlı bir dönücü olduğu söylenebilir. Bugün dönme süresinin 17,24 saat olduğunu biliyoruz. Bu süre, Voyager 2’nin uçuşundan önce tahmin edilenden uzundur. Dünya’dan, kutup bölgeleri gezegenin yuvarlağının orta bölümünde yer alır biçimde görüldüğü zamanlar olur.
Gezegenlerin çoğunun dönüş eksenleri ile yörüngeleri arasında dik sayılabilecek bir açı vardır. Dik açıdan sapma Dünya için 23,5 derecedir; Mars’ınki de yaklaşık bu kadardır; Satürn ile Neptün biraz daha eğikken Jüpiter ve Merkür neredeyse dimdiklerdir. Uranüs’ün durumu ise tamamen kendine özgüdür. Eksenel eğikliği 98 derecedir ki bu değer dik açıdan daha fazladır; yani teknik olarak geriye doğru devinmektedir. Bu da Uranüs’te yaşanan mevsimlerin biraz garip olacağı anlamına gelmektedir. Önce bir kutup, daha sonra ise diğer kutup 21 Dünya yılı kadar süren bir karanlığa gömülecektir. Bu uzun gece boyunca karşı kutupta da gce yarısı güneşi hüküm sürecektir. Dönüş süresinin geri kalanında ise uç durumlara daha az rastlanır.
Peki ama hangisi kuzey kutbu, hangisi güney kutbudur? Bu soruya cevaplandırmak sanıldığı kadar kolay değildir. Voyager 2’nin 1986 yılında gerçekleşen karşılaşması sırasında Pasadena’daki Görev Kontrol Merkezi’nde verilen basın demeçleri hakkında sonuç alınamayan bir tartışma çıkmıştı. Uluslararası Gök Bilimi Birliği’nin (IAU), tutulum dairesinin (Dünya’nın yörünge düzlemi de diyebiliriz) üstünde kalan tüm kutupların kuzey kutbu, altında kalan bütün kutupların da güney kutbu olduğu yönünde bir kararı vardır. Bu durumda Voyager 2 geçerken güneş ışığı alan kutup Uranüs’ün güney kutbu olacaktır. Ancak Voyager ekibi bunu tersine çevirmiş ve güneş ışığı alan kutba kuzey kutbu demişlerdir. Seçim size kalmış. Ben IAU’nun kararına uyma taraftarıyım.
Bu aşırı eğiklik sonucunda, Dünya’dan bazen tam kutba bazen de tam ekvatora doğru bakmaktaız. Söz gelimi 1946 yılında kuzey kutbu yuvarlağın ortasında yer alıyor; ekvator ise kenarda dönüyordu. 1966 yılında ise ekvator yukarıdan aşağıya doğru dönerken, kutuplar kenarlarda yer alıyordu. 1985-86 yıllarında tekrar bir kutba (bu sefer güney) kuş bakışı bakmıştık. 2007 yılında ise bir ekvator görüntüsüyle karşı karşıya olacağız.
Hiç kimse Uranüs’ün niye bu kadar eğik olduğu konusunda bir fikre sahip değildir. En çok benimsenen kuram, gezegenin, ilk zamanlarında ona çarpan büyük bir cisim yüzünden yana yattığı yönündedir. Kuşkucu bir insan olduğumu kabul ediyorum ama, çapı 50.000 kilometre kadar olan bu büyükçe ve sıvı cismin nasıl olup da böyle eğilebileceğini anlayamıyorum. Ancak bu arada daha mantıklı bir açıklama bulamadığımı da söylemek istiyorum. Sonradan bahsedeceğim başka bazı etkenler, Güneş sisteminin dış kısımlarında milyarlarca yıl önce alışılmadık şeyler olduğu yönünde belirtiler içeriyor.
Büyük teleskoplarla bile Uranüs’ün soluk yuvarlağı üzerinde gerçek anlamıyla birşey göremeyiz. Uranüs son derece kişiliksiz bir dünyadır; Jüpiter ve Satürn’e göre (ve hatta Neptün’e göre bile) çok daha donuk olduğu tartışma götürmez.
Uranüs’ün parlaklığında uzun dönemli ve kısa dönemli olmak üzere bazı farklılıklar görülür. Bunun nedeni büyük bir olasılıkla üst katmanlardaki bulutlarda yaşanan değişikliklerdir. Ayrıca Güneş’ten yayılan enerjinin az da olsa farklılık göstermesinin de bir rolü olması muhtemeldir. Bu konuda, değişen-yıldızlarla ilgili olarak yürütülenlere benzer amatör gözlemler çok yararlı olabilir. Ancak kesin ölçümler yapmak pek kolay değildir, çünkü Uranüs, parlak bir ışık noktası gibi değil de belirgin bir yuvarlak olarak görünür.
Amatörlerin Uranüs’ün yıldızların önünden geçişlerini gözlemlemeleri de yararlı olabilir. Bu konuda tek problem Uranüs’ün çok yavaş hareket ediyor olması yüzünden bu tür örtülmelerin sık yaşanmamasıdır. Ancak 1977 yılında gerçkleşen bir tane, çok önemli bir keşif yapılmasını olanaklı kılmıştır.
Tarih 10 Mart’tı ve ilgili yıldız 8. kadirdendi. Örtülme, aralarında Kuiper Airbone Gözlemevi’nin de bulunduğu birçok merkezden izlenebildi. Bu gözlemevi, büyük bir aynalı teleskop taşıyan bir uçaktı. Örtülmeden önce ve sonra yıldız birçok kez parıldadı. Bunun tek açıklaması yıldızın Uranüs’ün etrafında bulunan koyu renkli halkaların arkasında kalıyor olmasıydı. Daha sonra halkalar, özel kızılaltı teknikleriyle de saptandı. Böylece Voyager 2’nin uçuşundan önce onlar hakkında bilgi sahibi olmuştuk. Halka sistemi oldukça genişti; ama yine de Satürn’ün muhteşem halkalarıyla kıyaslanamazdı. Jüpiter’in halkaları parlak ve buzluyken, Uranüs’ünkiler kömür tozu gibi siyah ve dardı.
Voyager 2, Satürn’den 1981 yılında ayrıldıktan sonra çok uzun bir süre boyunca yol aldı. Üstelik araçta işler pek de yolunda gitmiyordu. Ana kamerayı taşıyan tarama platformu yeterince yağlanmamış olduğu için Satürn buluşmasının sonlarına doğru sıkışmıştı ve bir daha normale dönemeyeceğinden endişe ediliyordu. Neyse ki Uranüs’e yapılan ziyarette herşey yolunda gitti ve Voyager hiç hata yapmadan görevini tamamladı. Bu buluşma öncekilerden farlıydı, çünkü uzay aracı hedefine kutup bölgesinden yaklaşacaktı. Bu, hedef tahtasında tam onikiye isabet ettirmeye çalışmak gibi birşeydi.
İlk büyük keşif 30 Aralık 1985’te, aracın gezegene en yakın olduğu tarihten neredeyse bir ay önce yapıldı. Voyager, Uranüs’e o zamana kadar belirlenen en yakın uydu olan Miranda’dan daha yakın yeni bir uydu tespit etmişti. Shakespeare geleneği devam ettirilerek bu uyduya Puck adı verildi. Onu dokuz yeni uydu izledi. Bir gök bilimci durumu, sanki Tanrı bir karıştırıcıya doldurduğu uyduları gelişi güzel fırlatmış, diye tasfir ediyordu. Bu uyduların hepsi ufaktı. En büyükleri olan Puck’un çapı bile 150 km kadardı. Voyager, uydunun koyu renkli ve kraterli bir cisim olarak görünen bir fotoğrafını çekmişti.
Daha büyük olan uydular da buzlu yapılıydılar; ancak birbirlerine pek benzemiyorlardı. Oberon’daki kraterlerin zeminleri karanlıktı; Titania’nın üzerinde hem kraterler hem de vadiler ve buzdan uçurumlar vardı; Umbriel, daha yumuşak görünüyordu ve yüzeyi sanki daha eskiymiş gibi duruyordu. Voyager’ın çektiği Umbriel fotoğraflarından parlak bir şekil görünüyordu ama uzay aracının konumu nedeniyle şeklin tamamıfotoğrafta yer almıyordu. Bir krater olduğu tahmin edilen bu yüzey şekline Wunda adı verilmişti. Ariel’in üzerinde, akan bir sıvı tarafından açılmış gibi duran geniş, dallara ayrılan vadiler göze çarpıyordu. Ancak uyduların hepsi de atmosfer tutmayacak kadar küçüktü. Dolayısıyla bir zamanlar Ariel üzerinde sıvı suyun akmış olabileceğini düşünmek hiç de mantıklı değildi. Sistemde üzerinde durulmaya değer tek parça Miranda’ydı. Miranda’nın yüzeyinde farklı farklı oluşumlar görülebiliyordu: Kraterli ovalar, sarp kayalıklar ve uçurumlarla kaplı parlak bölgeler, korona adı verilen ve yarış pistine benzeyen, ikizkenar yamuk şeklindeki büyük alanlar. Çapı yaklaşık 480 km kadar olan Miranda’nın garip yüzeyi bir bilmeceydi. İlk zamanlarında büyük bir cismin ona çarpmasıyla parçalandığı ve daha sonra tekrar şekillendiği yönünde iddialar vardır; ancak gerçeği bilmiyoruz.
Halkalar net bir biçimde görülmüştü. Toplam on taneydiler. Ayrıca bir de en içteki halkadan neredeyse bulutların üst kısımlarına kadar yayılan seyrek bir madde vardı. Halkaların en geniş olanı en dıştakiydi; Epsilon halkası adı verilen bu halkanın iki çoban uydusu vardı. Cordelia ve Ophelia adlı bu uydular Voyager’ın ziyareti sayesinde tespit edilebilmişlerdi. Voyager, Uranüs’ten uzaklaşırken çekilen son fotoğrafta halka sisteminde bol miktarda toz bulunduğu görülmekteydi. Halkalar birkaç metre çaplı parçacıklardan oluşuyordu ve sonuçta kalınlıkları bir iki kilometreyi geçmiyordu.
Voyager 2, gezegene yaklaşırken birkaç bulut görülmüştü. Uranüs’te Jüpiter veya Satürn’de görülenlere benzer parazitler yoktu. Gezegenin kayda değer hiçbir özelliği yokmuş gibi görünüyordu. Nihayet belli belirsiz birkaç bulut ve radyo sinyallerine rastlandı; bunlar manyetik alanın varlığını gösteriyordu. Daha sonra Uranüs’ün manyetik alanının bizimkine göre ters olduğu, yani bizim kuzey dönme kutbu dediğimiz kutbun, manyetik güney kutup olduğu belirlendi. Manyetik eksen, dönme eksenine göre 60 derece eğikti ve üstelik kürenin merkezinden geçmiyordu.
Bu gerçekten de çok garip ve alışılmadık bir durumdu. Uranüs’te kutup ışıklarının, dönme kutuplarından çok ekvator civarında görüldüğü anlamına geliyordu. Manyetosfer gezegenin güneş alan yüzünde 600.000, arka yüzünde ise 6.000.000 kilometreye kadar uzanıyordu; yani uydu ailesinin tümünü içine alıyor demekti. Kısa dalgaboyunda yürütülen gözlemlerde, gündüz tarafında güçlü emisyonler görüldüğü saptanmıştır. Bu, Güneş sisteminde daha önce gördüğümüz hiçbir şeye benzemeyen ve bugün elektro aydınlanma olarak adlandırılan oluşuma neden olmaktadır.
Uranüs birçok bakımdan dev gezegenler arasında bir istisnadır. Sadece o bir iç ısı kaynağından yoksun görünmektedir; sadece onun eksenel eğikliği aşırıdır; yüzeyinde hiçbir etkinlik yok gibidir ve ekvatoru ile kutupları arasında sıcaklık farkı yoktur.
Uranüs’ten bakıldığında Güneş 1,5 yay derecelik bir açıyla görünecektir ki bu, Dünya’dan Jüpiter’in göründüğü büyüklüğün iki katından azdır. Ancak yine de Güneş çok parlak olacaktır ve bin tane dolunay kadar ışık saçacaktır. Diğer gezegenlerin pek azı görülebilecektir. Satürn çıplak gözle görülebilen bir cisim olacaktır; ancak Uranüs göğünde Güneş’e yakın bir konumda kalacak ve tıpkı Merkür gibi Güneş’in yanından pek uzaklaşamayacaktır. Yaklaşık 223/4 yılda bir de gezegen ile Güneş’in arasından geçecektir. Jüpiter hiçbir zaman Güneş’ten 17 dereceden fazla uzaklaşmayacak ve çoğu zaman çıplak gözle görülmesi mümkün olmayacaktır. Neptün ise karşı-konum civarındayken son derece parlak olacaktır; ancak onun ve Uranüs’ün, Güneş’in farklı taraflarında oldukları uzun süreler boyunca kaybolacaktır. Bu arada, Uranüs’ün Neptün’e bizim olduğumuzdan sadece biraz daha yakın olduğunu da gözden kaçırmayın. Haritalar yanıltıcı olabilir; bu iki gezegenin yakın komşu olduklarını düşünmek çok yanlıştır. Bu tıpkı bazı Avrupalıların Yeni Zellanda’nın Avustralya’dan bir taş atımı mesafede olduğunu düşünmlerine benzer.
Uranüs’ü görmek hiç de zor değildir. 1989 ile 1995 yılları arasında Sagittarius’ta yani Yay’da bulunmuştur; daha sonra geçeceği Capricornus’ta yani Oğlak’ta ise bu yüzyılın sonuna kadar duracaktır. Dürbünle bakıldığında yıldıza benzemeyişiyle ayırt edilebilir. Bir teleskop kullanılırsa mavimsiyeşil yuvarlak görünür hale gelir. İlginç ve garip bir dünyadır. Ayrıca modern insan tarafından keşfedilen ilk gezegen olma gibi bir özelliğe de sahiptir.

Neptün (Neptune)

0 yorum | Devamını Oku...

NEPTÜN (Neptune) Güneşe uzaklığı: 4455.3 4494 4532.5 Mio km
Yörüngesel dışmerkezlilik: 0.009
Yörüngesel eğiklik: 1.8 0
Eksensel eğiklik: 28.8 0
Çap: 50.538 km
Kurtulma hızı: 24.1 km/sn
Kütle: 17.2 (Yer = 1)
Hacim: 57 (Yer = 1)
Yoğunluk: 2.1 (su =1)
En yüksek kadir: 7.7
Dolanım süresi: 164.8 yıl
Eksensel dönme: 16 s 7 dk
Kavuşum dönemi: 367.5 gün
Uyduları: 8 tane Naiad, Thalassa, Despina, Galatea, Larissa, Proteus, Triton, Nereid

Gözlem koşulları:Yaklaşık 8 kadir parlaklığı ile Neptün oldukça sönüktür. Gök yüzünde çok yavaş ilerler. 90′lı yıllar boyunca Yay ve Oğlak takımyıldızlarında olacaktır. Çıplak gözle gök yüzünde ayırt edilemez ama belki dürbünle görülebilir. Küçük teleskop ile küçük yeşilimsi bir yuvarlak olarak görülür. Uydusu Triton 20 cm’lik teleskoplar ile ancak çok iyi koşullar altında görülebilir.
Güneş sisteminin derinliklerinde,Uranüs’ün 1,6 milyar kilometre ötesinde dev gezegenlerin sonuncusu olan Neptün bulunur. Neptünlü gökbilimciler -tabii eğer varlarsa- Dünya hakkında hiçbir şey bilmiyor olmalılar. Ama çok gariptirki Dünyalı gökbilimciler daha onu gözlemlememişken bile varlığından haberdarlardı.
Onlar bu imkânı, Herschel 1781’de onu tanımlamadan önce de birçok kez görüldüğü kaydedilen Uranüs vermişti. Flamsteed’in ilk Uranüs kaydı 1690 gibi eski bir tarihtir. Bu gezegen neredeyse yüz yıl boyunca gözlemlendiği anlamına geliyordu ki bu süre bir Uranüs yılından uzundu. Dolayısıyla Uranüs için kesin sayılabilecek bir yörünge çizilebir demekti. Ama maalesef önceki gözlemler ile 1781’den sonra yapılanlar birbirlerini tutmuyordu. Bir yerlerde yanlış olan birşey vardı. Daha sonra Fransız matematikçi Alexis Bouvard, eski gözlemleri tamamen gözardı ederek, yani sadece, Uranüs’ün bir gezegen olduğu tespit edildikten sonra yapılan ölçümleri kullanarak yeni bir yörünge çizdi.
Ancak bu bile işe yaramadı. Uranüs bir türlü beklenildiği gibi davranmıyor ve sürekli olarak öngörülen yörüngesinin dışına çıkıyordu. Üstelik 1822 yılına kadar hızlı hareket ediyor gibi görünmüşken 1822’den sonra yavaşlamıştı. Bu durumda, daha önce hesaba katılmış yeni bir etkenin varlığı kaçınılmazdı.
1834 yılında, Papaz T.J. Hussey çok ilginç bir fikir öne sürmüştür. Bilmediğimiz bir gezegen Uranüs’ü etkiliyor olamaz mı? Bu gezegenin hareketindeki düzensizliği açıklayabilirdi. İzleri takip ederek suçluyu bulabilirdik.
Hussey, 1835 yılında Greenwich’e Kraliyet Gök Bilimcisi olan George Airy’ye bir mektup yazacak kadar ileri gitmişti. Onunla pek ilgilenmeyen Airy, cevabında kuram için, Uranüs üzerindeki herhangi bir dışsal etkiyi açıklayabilme açısından en ufak bir ümit vaadetmiyor demişti. Terslendiğini anlayan Hussey ise bu konuyla ilgilenmekten vazgeçmişti. Bundan sonraki ilk adım 1837 yılında Alexis Bouvard’ın yeğeni Eugéne Bouvard’dan gelmişti. Airy ile mektuplaşan Bouvard, ona görünmeyen bir cismin sorumlu olabileceğini yazdığında, ondan, böyle birşey olsa bile o cismin tespit etmek imkânsız gibi birşeydir diye bir cevap almıştı. Bu sırada Uranüs de sorun çıkarmaya devam ediyordu. 1841 yılında genç bir Cambridge öğrencisi olan John Couch Adams tarafından tekrar gündeme getirildi. Adams günlüğüne şöyle yazmıştı:
“Bu hafta başında bir karar verdim, mezun olur olmaz, bugüne kadar üzerinde pek durulmamış bir konu olan, Uranüs’ün hareketindeki düzensizlikleri araştıracağım; bu duruma ondan daha uzak henüz keşfedilmemiş bir gezegen yol açıyor olabilir mi olamaz mı; belki bu gezegenin yörüngesi veya keşfini mümkün kılacak benzeri bir özelliği tespit edilebilir.”
1843’te mezun oldu, hem de büyük bir başarıyla. Ve o andan itibaren Uranüs’ün harektleri üzerinde çalışmaya başladı. Aynı yılın Ekim ayına gelindiğinde araştırmasının büyük bir bölümünü tamamlamıştı. 1845 yılının ortalarında ise yeni gezegenin konumunu yaklaşık olarak belirlemişti. Artık tek yapması gereken bir teleskop alıp onu aramaktı.
Adams, gözlem konusunda pek tecrübeli değildi ve kendine yardımcı olacak birini bulmaya çalıştı. Cambridge Üniversitesi’nde gök bilimi profesörü olan James Challais ile zaten görüşüyordu. Bir de Airy’ye mektup yazdı. Böylece yıllar süren ve hiç de hoş olmayan bir dizi talihsizliğin başlamasına neden oldu. Airy, genç ve tanınmış bir matematikçiye güvenmediği için olsa gerek, Adams ile hiç ilgilenmedi. Adams, iki kere onu görmeye gitti. Ancak birincisinde Airy seyahatteydi; ikincisindeyse uşak Adams’a, Kraliyet Gök Bilimcisi’nin akşam yemeğini yemekte olduğunu ve rahatsız edilemeyeceğini söyledi. Adams, daha fazla uğraşmadı ve ona varsayımsal gezegenin uzaklığını gök bilimi ölçütleriyle 38,4 olarak belirttiği, (ki bu Bode Yasası’na da uygundu) bir mektup bıraktı.
Airy ona Kasım ayında bir cevap yazdı; ancak mektubunda Adams’ın gereksiz bulduğu bir soru sormuş olduğundan yine bir sonuç alınamadı. Airy, hiç kuşkusuz büyük bir gökbilimciydi; ancak düzen ve yöntem takıntısı vardı. Ayrıca bir karar verdiğinde fikrini değiştirmek neredeyse imkânsız gibi bir şeydi. O sırada Kanal’ın karşı tarafında da bazı gelişmeler yaşanıyordu.
Urbain Jean Joseph Le Verrier adlı genç bir Fransız matematikçi de Uranüs ile ilgileniyordu ve Adams’ınkine benzer bir çalışma yapmıştı. Tabii ki o sırada Adams’ın çalışmasından haberdar değildi çünkü ortada basılı herhangi birşey yoktu. Le Verrier olaya daha farklı bir biçimde yaklaştı ve biri 1845 diğeri ise 1846 yıllarında olmak üzere iki rapor bastırttı. Airy, bu raporlardan ikincisini okuduğunda Le Varrier’in sonuçlarının Adams’ınkilere neredeyse tıpa tıpaynı olduğunu gördü. Böylece yeni gezegen avına başlandı.
Bu durumda Airy’nin, İngiltere’nin en büyük gözlemevinin müdürü ve Kraliyet Gök Bilimcisi Olarak kişisel bir araştırma yapması beklenirdi. Ancak o böyle yapmadı. Greenwich’te buna uygun bir teleskop ve Airy hiçbir koşul altında normal işleyişi bozacak bir harekette bulunma taraftarı değildi. Challis’i aradı ve üniversitedeki güçlü Northumberland mercekli teleskobunu kullanarak bir araştırma yapmasını istedi. Challis pek istemeyerek de olsa bunu kabul etti; ancak elinde o bölgeye ait gerektiğince iyi bir yıldız çizelgesi yoktu. Bu durumda çalışmasını çok zaman alan, zor bir yöntemle yürütmesi gerekiyordu.
Le Verrier elde ettiği sonuçları Paris Gözlemevi’ne yollamış, ama hiçbir sonuç alamamıştı. Sabır, Le Verrier’in sahip olduğu meziyetlerden biri değildi; bir süre sonra raporunu Berlin Gözlemevi’ne, Johann Galle’ye de yolladı ve ondan belirlediği noktaya bakmasını istedi. Galle bu öneiye sıcak baktı ve genç yardımcısı Heinrich d’Arrest ile birlikte çalışmalara başladı.
Mükemmel bir teleskobu ve yeni yapılmış bir gök haritası olduğu için çok şanslıydı; üstelik Le Verrier’in çalışmasına olan güveni de sonsuzdu. Sonuçta gezegen, gözlem yapılan ilk gece tespit edildi. Küçüktü ama yuvarlak yüzeyi kolayca farkedilebiliyordu. Ayrıca birkaç saat içinde hatırı sayılır bir yol katetmişti.
Berlin Gözlemevi’nin müdürü Johann Encke, bu keşfi duyurmak için zaman kaybetmedi. 28 Eylül 1846′da Le Verrier’e yazdığı mektupta: “Bayım, izin verin de sizi gökbilimini zenginleştiren bu parlak keşfimizden dolayı en içten dileklerimle kutlayayım. Adınız, evrensel genelçekimin geçerliliğinin en ikna edici kanıtıyla birlikte sonsuza kadar anılacak. Sanırım bu birkaç kelimeyle bir bilim adamının duymak için beklediği sözleri özetlemiş oluyorum. Birşey eklemeye çalışmam lüzumsuz olacak.”
Bu arada artık avda yalnız olmadığının farkında olmayan Challis de Cambridge’de araştırmalarını sürdürüyordu. Le Verrier’in zaferini duyduğunda, yaptığı gözlemleri inceledi ve gezegeni, gözleme başladığı ilk dört gün içinde iki kez kaydetmiş olduğunu gördü. Notlarını karşılaştırdı; sonuçta keşfi kendisinin yapmamış olduğunu kabullenmesi biraz zor oldu!
Adams’ın Le Varrier ile aynı sonucu bulmuş ve hesaplarını ondan çok önce bitirmiş olduğunu öğrenen Fransızlar bu duruma çok sinirlendi. İngilizler keşif şerefini çalışıyorlarmış gibi bir hava yaratılmıştı. Sonuçta neredeyse uluslararası bir skandal yaşanıyordu. Neyse ki ne Adams ne de Le Varrier böyle şeylerle ilgilenmiyorlardı; ilk karşılaştıkları an aralarında bir dostluk doğdu. Üstelik Adams, Fransızca bilmiyordu; Le Varrier de İngilizce’ye en az onun Fransızca’ya olduğu kadar yabancıydı. Kısa süren bir tartışmadan sonra yeni gezegene Roma Deniz Tanrısı Neptün’ün adı verildi.
Neptün keşfedilir keşfedilmez, Uranüs’ün yörüngesi tekrar hesaplandı. Bu sefer eski gözlemler yerine oturdu. 1882 yılında karşı-konumda olan Neptün, bu tarihten önce Uranüs üzerinde hızlandırıcı bir etki yaratmıştı. 1882’den sonra bu durum tersine döndü. Ondokuzuncu yüzyılın ilk yıllarında Neptün ve Uranüs Güneş’in farklı taraflarında oldukları için, Neptün’ün Uranüs üzerinde tedirgin edici etkisi belirsizdi. Böylece Neptün’ün keşfi gecikmiş oldu. Gezegenin dolanım süresi 164,8 yıldır. Ayrıca daha önce de bahsettiğimiz gibi Neptün Bode Yasası’na uymaktadır.
Bu konuyla ilgili ilginiç bir durum daha vardır. Galileo, 1610 yılının Ocak ayında, Jüpiter’in dört büyük uydusunu gözlemlerken yaptığı çizimlerde, komşu yıldızları da göstermiştir. Bu yıldızlardan birinin Neptün olduğu konusunda hiçbir şüphe yoktur. Hatta Galileo onun yer değiştirdiğini bile belirtimiştir; ancak yeni bir cismi farkedemediği için suçlamaya hiç hakkımız yok sanırım.
Neptün, büyüklük olarak yaklaşık Uranüs kadardır. Aslında ondan azıcık daha küçüktür; ama hem daha yoğun hem de daha ağırdır. Mavi yuvarlağı üzerinde Dünya’daki teleskopları kullanarak birşey görebilmek mümkün değildir. Ancak kısa dalgaboyu kullanarak çekilen bazı fotoğraflarda birkaç leke farkedilebiliyor.
Neptün bulunduktan hemen sonra, Avrupa’daki en iyi teleskoplardan birine sahip olan ünlü İngiliz amatör gözlemci William Lassell onu gözlemlemeye başladı. Lassell, soluk bir halka gördüğünü iddia etti ama sonradan bir göz yanılması olduğu ortaya çıktı. Gerçek halka sistemi, 1989’da Voyager 2 tarafından keşfedilene kadar bilinmiyordu. Ancak Lassell büyük uydu Triton’u doğru görmüştü. Dairesel bir yörüngesi olan Triton, en büyük uydularda az rastlanır biçimde ters yönde dönüyordu. Voyager öncesi bilinen ikinci uydu olan Nereid’in keşfi, ancak 1949 yılında mümkün oldu. Onu çalışmalarını Teksas’taki McDonald Gözlemevi’nde sürdüren G.P. Kuiper bulmuştu. Nereid küçük bir uyduydu ve oldukça dışmerkezli olan yörüngesi bir uydununkinden çok, bir kuryuklu yıldızınkine benziyordu. Neptün ile arasındaki mesafe 1.345.000 kilometreden 9.000.000 kilometreye kadar değişiyordu. Gezegen etrafındaki bir tam dolanımını 360 günde tamamlıyordu.
Bunlardan başka daha birçok şey daha biliniyordu. Neptün’ün ekseni, Uranüs’ünki gibi aşırı eğik değildi. Eksenel eğikliği Dünya’nınkinden sadece 5 derece daha fazlaydı. Dönüş süresini bulmak zordu, çünkü gezegen üzerinde görünür bir ayrıntı yoktu. Bu süre, ancak Voyager’ın geçişinden sonra kesin olarak belirlenebildi ve 16 saat 7 dakika olarak hesaplandı. Uranüs ve Neptün ikiz gibi görünüyorlardı ama tek yumurta kizi sayılamazlardı. Neptün, Uranüs’ten farklı olarak güçlü bir iç ısı kaynağına sahipti. Dolayısıyla daha aktif ve hareketli bir dünya olduğu tahmin ediliyordu, daha sonra öyle olduğu da kanıtlandı.
25 Ağustos 1989’da Voyager 2, Neptün’ün karanlıkta kalan kutbu üzerinde, bulutların üst kısımlarının 5000 kilometre kadar yukarısından geçti. Bu, öbür devlerle yapılan buluşmalarla karşılaştırıldığında gerçekleşen en yakın buluşmadır. Uzay aracı görevini kusursuz bir biçimde yerine getirdi. Üstelik oniki yıldan beri yoldaydı ve 6,5 milyar kilometreye yakın bir mesafe katetmişti. Gönderdiği fotoğraflar ise en az 1979’da Jüpiter’den gönderdikleri kadar kaliteliydi.
Gezegen üzerinde görülen en büyük oluşum, bugün Büyük Kara Benek olarak adlandırılan iri oval bir şekildi. Neptün üzerinde yer alan bu şeklin büyüklüğü, Büyük Kızıl Benek’in Jüpiter’e oranıyla aynıydı. Bu iki leke enlemsel olarak da benzerlik gösteriyorlardı. Yakınındaki bulutlara göre batıya doğru hareket eden leke, ters saat yönünde dönüyordu. Üzerinde, metan kristallerinden oluşan ve metan sirriusları olarak bilinen seyrek bulutlar yer alıyordu. Güneyinde ise dönme süresi çok daha kısa olan küçük ve değişken bir şekil vardı; bu şekil bugün Scooter adıyla anılır. Daha da güneye indiğimizde ikinci bir kara leke (D2) ile karşılaşıyoruz. D2, beş Dünya gününde bir, Büyük Kara Leke’ye tur bindiriyor. Neptün’ün rüzgârlı bir dünuya olduğu çok açıktır; rüzgârın hızının saatte 1100 kilometreye kadar çıktığı olur. Diğer dev gezegenlerde olduğu gibi, dönme süresinin en kısa olduğu yer ekvator, en uzun olduğu yer ise kutuplardır. Sıcaklık aşağı yukarı Uranüs’ünki kadardır; Güneş’e çok daha uzak oluşunun yarattığı fark, iç ısı kaynağı sayesinde kapatılır.
Üst atmosferi, yüzde 85 hidrojen, yüzde 13 helyum, yüzde 1-2 arası metan oluşturur. Çeşitli bulut katmanlarına rastlanır. Bunlardan en sık görüleni büyük bir olasılıkla hidrojen sülfitten oluşmaktadır. Daha yukarıda ise onlardan ayrı ve alttaki bulutların üzerine ışığı süzerek ileten bulutlar vardır. Tabii düzenli olarak yaşanan bir takım süreçler de vardır. Söz gelimi, üst atmosferdeki metan Güneş’ten gelen kısadalga ışınımlarla dağılır ve hidrokarbon halini alır; bunlar aşağı doğru inmeye başlar, o zaman da önce buharlaşır sonra da yoğunlaşırlar. Alttaki daha sıcak atmosfere ulaşan hidrokarbon buz parçacıkları, tekrar metan halini alırlar. Oluşan metan bulutlara üst atmosfere doğru yükselmeye başlar ve böylece herşey en baştan başlamış olur.
Neptün’ün iç yapısı büyük bir olasılıkla Uranüs’ünkine benzemektedir. Demir silkatlı bir çekirdeği olabilir. Kürenin kendisinin de esas olarak buzlardan, özellikle de su buzundan oluştuğu tahmin edilmektedir. Çekirdeğin kesin bir şekilde ayrı olup olmadığı ise bilinmemektedir; ancak bariz bir sınırı olduğundan çok, aşamalı olarak karıştığı düşünülmektedir. Sonuçta bilinen birşey var ki o da Neptün’ün etrafa, Güneş’ten aldığı enerjininm 2,8 katı daha çok enerji yayıyor olduğudur. Bu da sıcaklığın niçin Uranüs’ünkinden daha düşük olmadığını açıklar.
Gezegen elde herhangi bir kanıt olmadığı halde beklenileni doğrular biçimde radyo dalgaları yaymaktadır. Aslında gerçek sürprizi, manyetik alanın, neredeyse Uranüs’ünki kadar eğik oluşu yaratmıştır. Dönme ekseni ile manyetik eksen arasındaki açı 47 derecedir; ve yine Uranüs’te olduğu gibi manyetik eksen gezegenin merkezinden geçmektedir. Uranüs’ün manyetik ekseninin bu garip duruşuna, dönme ekseninin aşırı eğik oluşunun yol açtığı zannediliyordu, ancak sonradan bir ilgisi olmadığı anlaşıldı. Bu konu hâlâ esrarını korumaktadır.
Voyager öncesinde, Neptün’ün önlerinden geçtiği yıldızların gözlem- lenmesi sonucunda, gezegenin tam olmayan halkalara, başka bir değişle halka yaylarına, sahip olabileceği sonucuna varılmıştı. Ancak Voyager 2 oraya vardığında gezegenin Uranüs’ünkilerden bile daha net, beş tam halkası olduğu görüldü. Çok düzgün değillerdi; ana halkanın içinde daha parlak olan bazı bölgeler vardı. Halka sistemini oluşturan bütün parçalar biraraya getirilecek olsa ortaya 5 km çaplı bir uydu ancak çıkardı.
Yeni küçük uydular bulunacağı umuluyordu; öyle de oldu. Voyager altı uydu tespit etmişti: Naid, Thalassa, Despina, Galetea, Larissa ve Proteus. En büyükleri olan Proteus’un çapı 415 km kadardı. Aslında Nereid’den daha büyüktü ama Neptün’e çok yakın olduğundan Dünya’dan görülmesi imkânsızdı.Voyager, onun bir fotoğrafını çekmişti; fotoğrafta Proteus’un engebeli ve kraterli bir yüzeye sahip olduğu görülebiliyordu. Galatea, halkalarından birine çok yakın bir konumda hareket ediyordu yani büyük bir olasılıkla bir çobandı. Ancak dikkatle yürütülen aramalara rağmen, başka bir halka çobanı bulunamamıştı. Yeni bulunan uyduların hepsi de gezegene hem Trito’dan hem de Nereid’den daha yakındı.
Voyager 2, Neptün’ün kuzey kutbu üzerinden geçtikten beş saat sonra, artık gerçekten de son hedefi olan Triton’a ulaştı. Triton oldukça etkileyici bir dünyaya benziyordu. Olduğu zannedilenden daha küçüktü; çapı topu topu 2705 kilometreydi; yani bizim Ay’ımızdan bile daha ufaktı. Yüzeyinin bulutlar yüzünden görülemeyeceği düşünülmüştü; ancak bu da doğru çıkmadı. Triton’un atmosferi o kadar inceydi ki, görüşü ancak hafif bir sis kadar etkileyebiliyordu. Yüzeyi, Satürn ile Uranüs’ün orta boylu veya küçük uydularınkilerle karşılaştırıldığında, daha fazla kaya ve daha az buzdan oluşuyordu. Ayrıca yüzey sıcaklığı da oldukça düşüktü. -236*C (-400*F) olan sıcaklığıyla Triton, insan yapımı bir sondanın o güne kadar ziyaret ettiği en soğuk dünyaydı.
Triton’un yüzeyi bir buz tabakasıyla kaplı gibi görünüyordu. Bu tabakanın altta su buzu, üstte de onu örten nitrojen ve metan buzlarından oluştuğu zannediliyordu. Su buzu spektroskop kullanılarak saptanmıştı. Ama olması gerektiği düşünülüyordu; çünkü nitrojen ve metan buzları yüzey şekillerini uzun süre muhafaza edebilecek kadar güçlü değillerdir ve genellikle hareket etme eğiliminde olurlar. Aslında Triton üzerinde fazla yüzey şekli de bulunmuyordu; söz gelimi hiç dağ yoktu, dolayısıyla uydu üzerindeki en alçak bölge ile en yüksek bölge arasındaki fark 70-80 metreyi geçmiyor olmalıydı.
Güneş ışığı güney kutbu, nitrojen karı ve buzu nedeniyle pembe görünüyordu. Renk oldukça çarpıcıydı; ayrıca orda burda ilk başta neden oldukları açıklanamayan bazı ilginç lekeler de vardı. Normal kraterlerin sayısı son derece azdı, ancak büyük bir olasılıkla artık donmuş olan amonyak su karışımı bir sıvının akmasıyla açılmış geniş izler vardı. Pembe kutup takkesinin kenarında, ince metan buzu kristalleri yüzünden o renk görünen mavimsi bir bölge göze çarpıyordu. Ekvatora doğru indiğimizde, uzun çatlakları ve yumuşak engebeleriyle kavun kabuğuna benzetildiği için Kantalup Arazisi olarak adlandırılan bölgeyi görürüz. Diğer yerlerde ise çukurlara ve bazılarının gutta dediği, mantara benzeyen garip şekillere rastlarız. Ayrıca bir de muhtemelen su buzundan oluşmuş ortaları düz, basık, donmuş göller vardır.
Pembe kutup takkesini de içine alan bölge yani Uhlanga Regio’da koyu renkli lekeler göze çarpar. Donmuş yüzeyin altında sıvı nitrojenden oluşan bir katman varmış gibi durmaktadır. Bu nitrojen bir gün herhangi bir nedenle kabuğun üzerine çıkacak olursa, basınç nedeniyle artık sıvı olarak kalamayacağı noktaya geldiğinde patlayacak, nitrojen buzu ve buharından oluşan bir sağnağa neden olacaktır. Sonuçta fışkıran parçacıklar ince atmosferi aşıp etrafa dağılacaktır. Bu durumda lekelerin gayzer olduğu söylenebilirdi yani Triton aktif bir dünyaydı ki böyle birşey kesinlikle beklenmiyordu. Bir başka açıklama da yüzeydeki toz parçacıklarının güneş ışığını tutarak sıcaklığı nitrojenin kaynama noktasının üstüne çıkardığı yönündeydi. Ancak her iki açıklama da gayzer fikrini geçerli hale getiriyordu. Fışkıran parçacıklar 8 kilometre yükseğe çıkabilir ve rüzgârla 150 kilometre kadar taşınabilirdi. Triton’un atmosferi nitrojen ve metan gazlarının bir karışımından oluşuyordu. Uydunun yüzeyindeki basıncın sadece 1/70.000’i kadardı.
Elimizdeki verileri değerlendirdiğimizde Triton’un oldum olası Neptün’ün uydusu olmadığı, bir zamanlar bağımsız bir cisim olduğu sonucuna varabiliriz. Uydu, Neptün tarafından yakalandığında, büyük bir olasılıkla eliptik bir yörüngeye sahipti; ancak sonrasında geçen bir milyar yıllık süre yörüngeyi dairesel bir şekil alması için zorlamış olmalıydı. Bu süre boyunca uydunun içi çalkalanıp ısınmış iç kısımları oluşturan madde yüzeye çıkmıştı; sonuçta da orada donup kalmıştı. Pembe karı ve nitrojen gayzerleriyle Triton, Güneş sistemindeki dünyaların hiçbirine benzemez.
Yakın gelecekte yapmayı istediğimiz şeylerden biri de Triton’u bir kez daha görebilmek olsa gerek. Triton mevsimleri son derece uzun ve karmaşıktır; Bu mevsimler boyunca buz dağılımında önemli değişiklikler meydana gelir. Nitrojen buzu tıpkı bir buzul gibi yüzebilir; hatta bir kutuptan diğerine kadar gitmeleri bile mümkündür. Ne yazık ki bugün için, Güneş sisteminin dış kesimlerine yeni sondalar göndermek söz konusu değildir. Bu da orayla ilgili yeni şeyler öğrenmek için daha çok bekleyeceğimiz anlamına gelmektedir. Üstelik yörüngesi oldukça dış merkezli olan Nereid, Voyager 2’nin geçişi sırasında görüntüleme açısından uygun olmayan bir konumdaydı; dolayısıyla onun hakkında çok az şey biliyoruz.
Neptün’den bakıldığında güneş ışığı en az 700 dolunay kadar güçlü bir şekilde görünecektir. Başka bir deyişle, bir metre uzakta yanan normal bir mum alevinden sekiz kat fazla biçimde. Neptün’den bakıldığında güneş ile Venüs arasındaki uzanım 11/2 derece. Dünya 2 derece, Mars 3 derece, Jüpiter ise 10 derece olacaktır. Satürn, uygun konumda olduğundan çıplak gözle görülebilecektir. Bu arada Satürn’ün Neptün’e bize olduğundan daha uzak olduğunu aklınızdan çıkarmayın. Ancak Uranüs bile uzun süreler boyunca gözden uzak olacaktır. Dolayısıyla Neptün’lü gök bilimciler var olsalardı diğer gezegenler hakkında çok az bilgi sahibi olacaklardı.
Neptün bizi ana Güneş sisteminin sınırına getirir. Tabii plüto da var ama Neptün’e uzun süre boyunca gezegen ailesinin en dıştaki üyesi olarak bakılmıştı.

Güneş Sistemi Ve Diğer Gezegenler

0 yorum | Devamını Oku...

GÜNEŞ SİSTEMİ VE DİĞER GEZEGENLER
a)Güneş sistemi
Güneş sistemi yaşama, 4,6 milyar yıl önce, içinde kayaç ve buz parçacıkları bulunan büyük bir gaz bulutu kütlesi olarak başlamıştır. Bulut kendi çekim gücü nedeniyle sıkıştığında güneş oluşmuş, tanecikler de bir araya gelerek gezegenleri ortaya çıkarmıştır.
Güneşin iç bölümünde nükleer füzyonla hidrojen helyuma dönüşür ve bu dönüşüm sonucu açığa çıkan enerji, önce ışık yuvarına, oradan da uzaya gider.
b)Merkür
Güneşe en yakın gezegen Merkür’dür. Ortalama 57,9 milyon km. olan Merkür-Güneş uzaklığı astronomideki diğer uzaklıklara kıyasla gerçekten çok küçüktür.
Güneşe çok yakın olduğundan, gündüz vakti Merkür’deki sıcaklık 423 C ye kadar çıkar. Ama güneş battığı zaman sıcaklığın –183 C ye kadar indiği olur. Güneşe bu kadar yakın olmasına karşın bazı uzmanlar Merkürde hala kraterlerin güneş görmeyen yerlerinde buz bulunabileceğini düşünüyorlar.
Bir teoriye göre Merkür, bundan milyonlarca yıl önce 2 kez hemen hemen kendisi kadar büyük gök cisimleriyle çarpıştı. İlk çarpışma sonucunda Merkür neredeyse tümüyle sıvılaştı, ağır metaller dibe batarak büyük çekirdeği oluşturdu. İkinci çarpışma sonucunda da kabuğun büyük bir kısmı parçalanarak ince bir kabuk kaldı.
c)Venüs
Güneşe en yakın ikinci gezegendir. Güneşe uzaklığı 108 milyon km.dir. Dünyaya en yakın konuma geldiğinde güneş ve aydan sonra en parlak cisimdir. Işığı bazen gölgeler oluşturabilir.
Venüs’ün atmosferi çok yoğundur. Öylesine yoğundur ki; dünyadaki en güçlü teleskopla bile yeryüzü şekillerinin görülmesi imkansızdır. Atmosferinin basıncı yüzünden ezileceğinden, gökyüzünden yağan sülfürik asitten yanacağından, atmosferi nefes almaya uygun olmadığından büyük bir olasılıkla hiçbir insan Venüs’ün yüzeyine ayak basamayacaktır.
Venüs çok yavaş döner. Kendi çevresinde dönmesi 243 gün sürerken, güneş çevresinde dönmesi 224 gün sürer. Bu nedenle bir Venüs günü bir Venüs yılından daha büyüktür.
d)Yer
Dünya, güneş sisteminde yaşam olan tek gezegendir. Güneşe uzaklığı ortalama 149,6 milyon km.dir. Dünya, demir ve nikel bir çekirdeği saran kayaç tabakasından oluşur. Derinlere indikçe sıcaklık artar.
Yaklaşık 4,6 milyar yıl önce, bir gaz ve toz bulutu yoğunlaşarak güneşi oluşturmuştur. Bulutun içindeki başka maddeler birleşerek dünya ve diğer gezegenleri oluşturmuştur. Dünyada demir ve nikel eriyerek çekirdeği oluşturmuştur. 4 milyar yıl önce dünyanın kabuğu oluşup yanardağlardan çıkan su buharı yoğunlaşarak denizleri meydana getirmiştir.
e)Mars
Dünyanın yarısı büyüklüğünde olan Mars birçok yönden dünyaya benzer. Mars gününden sadece bir saat uzundur. Marsta da dünyadaki gibi mevsimler vardır. Ama güneşe uzaklığı 227,4 milyon km. olduğu için ortalama sıcaklığı –28C dir. Ayrıca bir Mars yılı 687 dünya günü sürer.
Marstaki nehir yatakları Mars’ın ikliminin bir zamanlar daha sıcak, atmosfer basıncının da suyun yüzeye çıkmasını sağlayacak kadar yüksek olduğunu gösteriyor. Belki de bilinmeyen bir olay Mars’ın atmosferinin uzaya kaçmasına ve demirce zengin olan toprağının pas rengi almasına neden oldu
Uzay yolculuklarının ateşli taraftarları 2030 yılı civarında insanoğlunun Mars’a ayak basacağını umuyorlar. Daha sonra Mars’ta üsler kurulacak, bu üsler büyüyüp gelişecek ve en sonunda uzayın daha uzak bölgelerine yapılacak yolculuklar için fırlatma rampası olarak kullanılacaktır.
f)Jüpiter
Güneş sistemindeki en büyük gezegen Jüpiter’dir. 16 uydudan oluşan ailesi ile minik bir güneş sistemine benzer. Çok küçük olan katı çekirdeği dışında minyatür bir güneş gibi hemen hemen tümüyle gazdan oluştuğu için Jüpiter diğer gezegenlerden farklı gözükür.
3 Aralık 1973 tarihinde, Jüpiter’e ulaşan Pioneer-10, dünyaya Jüpiter’in bulutlarına ait ilginç fotoğraflar gönderdi. 1979 yılında Voyager araçları Jüpiter’in dünyadan görülemeyecek kadar ince 3 tane halkası olduğunu buldular.
Jüpiter’deki kırmızı leke ilk kez İngiliz astronom Robert Hooke tarafından 1664 yılında gözlenmiştir. Aşağıdan yukarıya doğru hızla yükselen maddenin yarattığı 8 km. yüksekliğinde, 40.000 km. uzunluğunda ve 14.000 km. genişliğinde olan bir fırtınadır. Saatte 500 km. hızla esen bu fırtına önüne çıkan küçük fırtınaları yutarak büyür.
g)Satürn
Güneş sistemindeki ikinci gezegen olan Satürn, güneşe uzaklık sıralamasında 6. dır. Jüpiter gibi Satürn’de neredeyse tümüyle gazdan oluşur. Kendi çapının beş katı çapa sahip olan çok güzel görünüşlü halkaları oldu için Satürn’e “Halkalı Gezegen” de denir.
Satürn’ün yoğunluğu o kadar azdır ki büyük bir göle konsa batmayacak kadar hafiftir.
Satürn’ün halkaları aletleri oldukça ilkel olan eski astronomların aklını karıştırmıştı. Galileo 1610 yılında ilk kez teleskopla Satürn’e baktığında, sanki üçlü bir gezegen sistemiymiş gibi, her iki yanında birer uydu gördüğünü sanarak şaşırmıştı. İki yıl sonraysa uydular görünmez olmuştu.
Satürn’ün en büyük uydusu Titan’dır. Merkür’den daha büyük olan bu uydunun yoğun ve kalın bir atmosferi vardır. Bir uydudan çok küçük bir gezegene benzer. 21.yy.ın başlarında Amerikan Cassini uzay sondasından ayrılacak olan Avrupa yapımı bir sondanın, uydunun atmosferine sokulması planlanıyor.
h)Uranüs
Uranüs, 1781 yılında İngiliz astronom William Herschel tarafından bulundu. Daha önce iki kez gözetlenmiş ama yeni bir gezegen olduğu anlaşılamamıştı. Uranüs’ün güneşten ortalama uzaklığı 2 milyar 869 milyon km.dir. Uranüs, güneş çevresindeki bir dönüşünü 84 yıldan biraz daha uzun bir zamanda tamamlar.
Uranüs güneş çevresindeki yörüngesinde yan yatmış olarak döner, tıpkı yuvarlanan bir varil gibi. Bu nedenle de zaman zaman her iki kutbu da bize doğru döner. Bu garip dönüşe, milyarlarca yıl önce dev bir gök taşının gezegene çarpması neden olmuş olabilir.
Uranüs’ün halkaları 1977 yılında, astronomlar gezegenin arkasından bir yıldızı gözledikleri sırada bulundu. Yıldızın ışığı beklenenden 5 dk. önce sönükleşince yıldızın ışığını engelleyenin bir uydu olabileceği düşünüldü. Aynı şey gezegenin öbür yanında da tekrarlanınca bunun bir halka sistemi sonucu olduğu anlaşıldı.
i)Neptün
j)Plüton
k)Onuncu gezegen

Uzaya İlk Adım (Ay’ın Fethi)

0 yorum | Devamını Oku...

UZAYA İLK ADIM (AY’IN FETHİ)
1968’de Ay’ın fethine doğru yeni bir aşama gösterildi. 15 Eylülde fırlatılan SSCB uzay aracı Zond-5, ilk Yer-Ay-Yer gidiş gelişini gerçekleştirirken, ABD’nin de Apollo tasarısına başlanmıştır.

Temmuz 1969’da Apollo-9 içinde Armstrong, Aldrin ve Collins ile uzaya fırlatıldı. 21 Temmuz’da Türkiye saati ile 04.56’da Neil Armstrong, Ay üstüne ayak basan ilk insan oldu. Onu hemen Edwin Aldrin izledi. Bunlardan sonra Apollo-11, Apollo-12 ve Apollo-13 uçuşları gerçekleştirildi.

Apollo-13’ün yolculuğu sırasında (Nisan 1970) pilotların büyük bir kaza atlatmalarına karşın, uzay yarışında ABD üstün görünüyordu.

Bununla birlikte NASA bir süre için Ay programını durdurdu. SSCB ise 1970 sonunda Ay üstüne ilk otomatik yumuşak iniş gerçekleştirdi. SSCB’in fırlattığı Luna 16-20 Eylül 1970’te Bolluk denizine indi. Luna-17 Ay üstüne bir ay aracı olan Lunakod’u bıraktı. Bu araç 3600 m.lik bir taramadan sonra Ocak 1971’de Luna-17’ye geri döndü.  

Hakkımızda

Bu Sayfa Üzerinde Aklınıza gelecebilecek tüm sorulara cevap arayacağız, sormak istediginiz birşey varsa iletişim kısmından yazabilirsiniz.

Takip Listemizden

İstatistikler


Sitemizde 33 kategoride toplam yazı bulunmaktadır!

Görüntülenme

back to top