25 Aralık 2011 Pazar

Venüs

0 yorum | Devamını Oku...

VENÜS
Güneş sisteminde Yer ile Merkür arasında yeralan gezegen. Güneş ve Ay’dan sonra en parlak gök cismi olan, gece ilk parlayan, sabah son sönen yıldız olduğundan halk arasında Çobanyıldızı, Çolpan, Çulpan da denen Venüs, 50 km kalınlığında, 400 km/saat hızla esen şiddetli rüzgarların etkisiyle çevresini 4 günde dolaşan kalın bulutumsu bir örtüyle kaplı olduğundan Yer’e en yakın (41 milyon kilometre) gezegen olmasına karşılık, en az tanınan gezegendir. Atmosferin başlıca özellikleri arasında 25 km yükseltiye kadar berrak ve sakin olması, sıcaklığın 500° C’a, basıncın 100 bara yaklaşması ve %95 oranında karbondioksit gazı içermesi sayılabilir. Ekvator çapı 12.104 km, kutup çapı 12.104 km, basıklığı 0, Güneş’e en çok uzaklığı 109.000.000 km, Yer’e en çok uzaklığı 258.000.000 km, Güneş’e en az uzaklığı 107.400.000 km, Yer’e en az uzaklığı da 41.000.000 km’dir.
Venüs 8 sondasıyla yapılan ölçümler, gezegen yüzeyinde sıcaklığın 460° C – 48° C arasında değiştiğini göstermiştir. Güneş ışınları bulutlardan yavaş yavaş sızarak yüzeye ulaşır; gezegenin göğü sürekli kapalı olduğundan, ısı çok küçük ölçülerde ışıyabilir. Üstelik atmosfer, kayaçlar üstünde büyük bir basınç uygular. Sondalar, gezegen yüzeyinde yaklaşık 87,3 atmosferlik bir basınç ölçmüştür. Yüzeyin ilk fotoğraflarını, Venera 9 ve Venera 10 uyduları çekmiş, 1982’de Venera 13 ve Venera 14 renkli fotoğraflar elde etmişlerdir.

Ay

0 yorum | Devamını Oku...

AY
Ay, Dünya’nın tek doğal uydusudur ve bazı özellikleri nedeniyle Güneş sisteminin değişik bir üyesidir. 3.476 km’lik çapıyla Dünya’nın dörtte biri büyüklüğündedir ve 81,3 kat daha hafiftir. Güneş sisteminde Ay’dan hem daha büyük, hem de daha ağır uydular bulunmasına karşın, Pluton’un yeni keşfedilen uydusu dışında hiçbiri, uydusu oldukları gezegenlerden yoğunluk ve hacim bakımından fazla farklı değildir. Dünya-Ay sistemi tam anlamıyla çift gezegen oluşturmaktadır.
Gökbilimsel Veriler
Ay, Dünya’nın çevresinde, Dünya’nın Güneş çevresinde döndüğü düzleme 5° 8’ 43” bir eğimi olan elips biçimli bir yörünge üzerinde döner. Dünya’ya olan uzaklığı 356.000 km ile 407.000 km arasında değişir; ortalama uzaklığı 384.000 km’dir. Bu uzaklık en yakın durumda olduklarında bile Venüs ve Merih’e olan uzaklığın %1’i kadardır. Gökyüzünde gördüğümüz Ay yuvarlağının çapı 31’ 5” 2 dolayındadır.
Ay’ın Dünya çevresindeki dönüşünü tamamlayarak gökyüzünde eski durumunu alması, 27 gün, 7 saat, 43 dakika ve 11,6 saniye alır. Dünya Güneş’in çevresinde Ay’ın dönüş yönüyle aynı yönde döndüğü için aynı görünüşe ulaşılması 29 gün, 12 saat, 44 dakika ve 2,8 saniye sürer. Bu süre iki dolunay arasındaki zamana eşittir ve çok eski zamanlardan beri bilinmektedir. Ay’’n ortalama hızı, 1,023 km/saniye’dir. Ve bu değer ortalama açısal hız olarak saatte 33 dakikalık bir açıya eşdeğerdir; bu da Ay’ın çapından biraz fazladır.
Uzaydaki hareketinin yanısıra Ay, 27 gün, 7 saat, 43 dakika ve 11,6 saniyede kendi ekseni çevresinde de döner. Bunun sonucu olarak hemen hemen her zaman aynı yüzü Dünya’ya dönüktür. Yörüngesel hareketindeki düzensizlikler ve yörüngesinin ekliptik düzleme eğik olması “optik titremeler” yaratarak Dünya’dan Ay’ın yüzeyinin %59’unun görünmesini sağlar. Kalan %41’lik bölüm, Luna 3 adlı Rus uzay gemisinin Ekim 1959’da fotoğraflarını çekmesine kadar bilinmiyordu. O günden bu yana ayrıntılı haritaları çıkarılmıştır.
İç Yapısı
Ay’ın iç yapısına ilişkin en önemli ipuçlarını yoğunluğu ve hacmi verir: Ortalama yoğunluğu 3,34 gr/cm3’tür. Apollo Programı 31’in Ay’dan Dünya’ya getirdiği taşların yoğunluğu 3,1 ve 3,5 gr/cm3 arasında değiştiği için, bu bulgu Ay’ın iç yapısının dış yapısından çok fazla farklı olması –yani yoğunluğunun çok farklı olması- olasılığını azaltmaktadır.
Ay’ın litostatik basıncı, yüzeyde sıfır ve merkezde 47,1 kilobar, litosferin çoğu yerindeyse ortalama 10 kb’dır. Bu değer, tipik Ay taşlarının ezici gücünün de üzerindedir ve bu yüzden egemen olan basınç, kütlesinin çoğunun katı maddelerden oluşmasına karşın Ay’ın küresel biçimli olmasını sağlar. Kütlesinin sertliği, Apollo’nun Ay yüzeyine yerleştirdiği sismograflarca da doğrulanmıştır. Tüm kanıtların ışığında, Ay’ın depremler açısından Dünya’dan çok daha sakin olduğu görülmektedir.
Kaydedilen Ay sarsıntılarının merkezlerinin Ay’ın kabuğunun 600-900 km altında olduğu saptanmıştır. Bu sarsıntıların sismik kayıtlarının gösterdiği basınç ve esnek dalgalar, bu dalgaların yayıldığı katmanların sıvı olamayacağını göstermektedir. Ay sarsıntılarının sönme süresinin bu denli uzun olması, Ay yüzeyinin ölçülebilen miktarda sismik dalgalar yayabilmesi için oldukça çatlak katmanlardan oluştuğunu göstermektedir.
Sismik kayıtların gösterdiği sertlik derecesine koşut olarak, Ay’ın uzaydaki hareketi boyunca Güneş rüzgarıyla etkileşmesinin kayıtları da Ay’ın bir iletken gibi davrandığını doğrular. İletkenliği, 1.500° C’de hala katı gibi davranabilen silikon taşlarınkine denktir. Ay’ın iki kutuplu bir magnetik alanının olmaması, Ay’ın madeni bir çekirdeği olmadığını kanıtlar.
Kimyasal Yapısı
Ay’ın kimyasal yapısına ilişkin ilk verileri, 1969 yılında Apollo Dünya’ya getirdi. Bu verilerin dayandığı taşlar Ay’ın yüzeyinden alınmış olmasına karşın, Ay’ın iç yapısının fazlaca farklı olduğunu düşünmek için bir neden yoktur. Atomik bileşim olarak Ay’da en fazla bulunan element oksijendir: Ay’ın kabuğunun ağırlık olarak %60’ını oluşturur. Oksijeni, %16-17 ile silikon, %6-10 ile alüminyum, %4-6 ile kalsiyum, %3-6 ile magnezyum, %2-5 ile demir ve %1-2 ile titanyum izler. Tüm diğer elementler ağırlık olarak %1’den daha azdır. Oksijen, silikon ve alüminyum, Ay’da da Dünya’da bulundukları miktara yakın miktarda bulunurlar. Demir ve titanyum miktarları Ay’da daha fazladır; alkali metaller, kömür ve nitrojense Dünya’ya oranla daha az bulunur.
Bu elementlerden oluşan bileşiklerden silis (SiO2), ağırlık olarak Ay kabuğunun %40-50’sini oluşturur. Dünya’nın kabuğundaki silis miktarı %48,5’tir. Demir oksit (FeO) ve kalsiyum oksit (CaO) Ay’ın kabuğunda %10-20’lik bir ağırlık taşırlar. Tüm oksitlenmiş bileşikler Ay’da oksitlenmelerinin en düşük durumunda bulunurlar: çünkü, 1.100-1.200° C ısılarda katılaşmışlardır. Ay’da H2O’nun (suyun) hiçbir biçimi bulunmaz; ayda su izine rastlanmamıştır. Ay’da bulunan hidrojen, Güneş rüzgarlarınca taşınmıştır ve oksitlenmeyle oluşan su, hemen Güneş tarafından ayrıştırılır.
Yüzey Özellikleri
Daha ayrıntılı teleskopik ve uydu gözlemleri olduğu kadar çıplak gözle yapılan gözlemler de Ay’ın iki farklı türde araziden oluştuğunu gösterir. İlki engebeli, daha parlak, dağlarla doludur ve Ay’ın görünen yarısının üçte ikisini görünmeyen yarısınınsa onda dokuzunu kaplar. İkinci türe Latince “denizler” anlamına gelen maria adı verilir. Kıtalar için kullanılan “yükseklikler” sözcüğü de, gerçek anlamı düşünüldüğünde, o alanın tümü yüksek olmadığı için yanlıştır. Maria da, o alanın suyla hiç ıslanmadığı düşünüldüğünde yanlış bir addır.
Ay’ın teleskoplarla incelemesi sonucunda tüm yüzeyinin kraterlerle kaplı olduğu anlaşılmıştır. Kraterlerin sayıları çok fazladır; büyüklükleri, Mare İmbrium (Yağmur denizi) ya da Mare Orientale (Doğu denizi) gibi oluşumların 1.000 km genişliğinden, Apollo’nun Dünya’ya getirdiği saydam taşların oluşturduğu 10-20 mikronluk çukurlara kadar değişir. Bu oluşumların kökeni artık belirlenmiştir: Asteroitlerden kuyrukluyıldızlara kadar çeşitli gök cisimlerinin etkisiyle oluşmuşlardır. Ay’ın yüzeyi bir atmosfer tabakasıyla kaplı olmadığı için, Ay’a çarpan tüm cisimlerin Ay üzerindeki etkileri, saniyede birkaç kilometrelik kozmik hızlarla oluşmaktadır. 3 km/saniye hızla hareket eden bir parçacık, aynı ağırlıktaki TNT’nin patlamasıyla çıkan enerjiye eşit miktarda kinetik enerjiye sahiptir. Bu kinetik enerji bir etkiyle harcandığında, mekanik ya da ısıl enerji olarak başka bir biçim alır; sonuç, krater adı verilen izlerdir. Küçük ve orta büyüklükteki kraterler, vuruş merkezindeki taş tabakalarını ortaya çıkaracak biçimde oluşmuştur. 100 km’lik büyük kraterlerin oluşumunda ortaya çıkan ısı, tüm krater yüzeyinin eriyik maddelerle kaplanmasına yolaçmıştır. Ay’ın yüzeyindeki en büyük oluşumlardan dairesel Maria’da yüzeyin lavlarla kaplanması, kraterin oluşumundan yalnızca birkaç yüz milyon yıl sonra oluşmuştur.
Bu bilgiler, Apollo’nun getirdiği Ay taşlarının mineral bileşimiyle tamamen uyuşmaktadır. Mineraloji açısından Ay “maria”sının çukurlarını kaplayan koyu saydam maddenin ana yapısı, bazaltlı gabbro olarak tanımlanabilir. Bu madde, Dünya’daki lavlara benzerse de demir ve titanyumca daha zengindir. Buna karşı, kıtasal alanları oluşturan taşlar, Dünya’daki granitlere benzeyen feldispat taşlarıdır. Bunlar, Anortozit denen bir çeşit saf feldispat içerirler. Anortozitler bazalt taşların demir ya da magnezyumunu alüminyumla değiştirip onların hem daha açık renkli olmasını sağlamış, hem de ağırlıklarını azaltmıştır. Ay’da anortozitlerin bulunması, Ay’ın kabuğunun kimyasal olarak farklılaşmış ve demir gibi ağır elementlerin daha hafif bileşenlere ayrılmış olduğunu gösterir. Buna ek olarak, anortozitler çoğunlukla iri taneli mineraller içerirler. Bunun anlamıysa, eriyik durumundayken yavaş yavaş soğudukları, dolayısıyla bu olayın Ay yüzünde gerçekleşmediğidir.
Ay’daki kayaların fiziksel dokusu, kimyasal bileşimlerinden daha da ilginçtir. Çünkü bu doku, Ay yüzeyi oluşumlarının kökenini ortaya koymaktadır. Dikkat çekici olan, Ay kıtalarından getirilen gereçlerin ağırlıkla %85-90’ını breşlerin oluşturmasıdır. Breşler, önceden var olan billursu yapıdaki kayalardan oluşan polimiktik (çeşitli maden tozlarından oluşan) konglomeralardır. Bu kayalar, ilk katılaşmalarından önce ortaya çıkan olaylar sonucu, farklı kökenlerden türemiş köşeli parçalar oluşturarak kaynaşmışlardır. Böylesi breşlerin yapısında ani başkalaşımlar (yüksek sıcaklığın ve çarpmayla oluşan basıncın yol açtığı değişiklikler) belirgin biçimde görülür. Buradan da, çeşitli büyüklüklerdeki gök cisimlerinin yüksek hızlarla Ay yüzeyine çarparak breşlerin kendilerine has yapısını değiştirdiği kesin olarak anlaşılmaktadır. Ay yörüngesindeki uzay araçları, yerçekiminin son derece yüksek olduğu bölgeler buldu. Maskon adı verilen bu bölgeler, genellikle maria alanlarının pek çoğunun altında bulunur. Bunların, çarpma etkileriyle maria alanlarını oluşturan cisimlerdeki maddelerin ya da aynı alanların lav püskürmesi sonucu eriyik durumundaki iç katmanlardan gelen volkanik kayalardaki yoğun maddelerin derine gömülmüş artıklarının kimi yerlerde yoğunlaşması sonucu ortaya çıktıkları düşünülmektedir.
Sıcaklık
Ay’ın tek ısı kaynağı Güneş’tir, dolayısıyla atmosferden yoksun olmasaydı ortalama sıcaklığı yeryüzününkiyle aynı olacaktı. En yüksek ve en düşük sıcaklıklar arasındaki fark çok yüksektir. Güneş’in hemen altındaki Ay’ın tropikal bölgesinde yüzey sıcaklığı 130° C’dir; ancak, yüzey gün batımına doğru hızla soğur ve gece yarısıyla Güneş’in doğması arasında 173° C düşer. Bu yüzden Ay’ın tropikal bölgesindeki günlük sıcaklık değişimi, 300° C’ı geçer; suyun günlük kaynama sıcaklığının çok yukarılarından sıvı havanın sıcaklığına kadar değişiklikler gösterir. Ancak bu alt ve üst sınırlar, yalnızca tropikal bölge ve uzaya açık yüzey için geçerlidir. Ay yüzeyindeki maddelerin yalıtıcı özelliklerinden ötürü, günlük sıcak ya da soğuk dalgaları, yarım metreden daha aşağısını etkilemez: Bu derinliklerde radyo spektrumu içinde kalan ısı yayılımı gün boyunca sabit kalır ve -30° C dolayında bir ortalama sıcaklığa denktir.
Oluşum ve Evrim
1969-72 yılları arasında Apollo ekiplerinin Ay’ın çeşitli yerlerinden topladıkları kayaların radyometrik yüzölçümleri, Ay’ın yerbilimsel tarihine ilişkin kanıtlar ortaya koydu. Her bir bölgede bulunan maddeler arasındaki en eski parçacıkların yaşı, 4,5-4,6 milyar yıl arasındaydı. Bilinen en eski krondritik meteorların yaşı da bu civarda olduğundan, tüm Güneş sisteminin yaşı da 4,6 milyar yıl olabilir. Bu yaştaki hiçbir madde büyük parçalar halinde duramayacağından Ay’ın oluşumunun ilk 200 ya da 300 milyon yılı sırasında, yani bombardıman etkisi yapacak gezegenler arası maddelerin büyük ölçüde yok olmasından önce, Ay yüzeyinin bombalanması sonucu bu maddeler, parçalanıp Ay’ın dört bir yanına taşınmış olabilir.
Yaş ölçümü sonuçları, Ay’ın değişik bölgelerini ortadan kaldıran ve kraterler oluşturan çarpmaların büyük bir bölümünün, Ay’ın oluşumunun ilk 500 milyar yılı içinde gerçekleştiğini gösterdi. Dairesel maria olarak bildiğimiz oyuklara yolaçan bu çarpmaların en büyüğü, Ay’ın oluşumundan 400-800 milyon yıl sonra ya da günümüzden 3,3-3,8 milyon yıl önce gerçekleşti. Oluşumunun ilk 800 milyon yılında Ay yüzeyinde başka bir bazalt görülmedi, 600 milyon yıl sonrasına kadar da yeni bazalt oluşmadı.
Ay’ın yaşamının üçte ikisinden çoğunu oluşturan geçtiğimiz 3 milyar yıl içinde, Ay’da başka bir şey olmadı. Taşlarla kaplı yüzü kozmik havanın etkisinde kalmaya devam etti ve yeni çarpmaların sıklığı giderek azaldı. Sonraki milyonlarca yıl süresince, Ay’ın yüzeyi gitgide taşlaşmış bir buruşukluk kazandı. Bu geçen uzun zaman içinde Ay’da gerçekleşen gelişmeler Güneş sisteminin durumunu yansıtmaktadır; Ay, adeta geçmişi yansıtan bir fosil gibidir.

Mars (Merih)

0 yorum | Devamını Oku...

MARS (MERİH)
Yer ile Jüpiter arasında yeralan Merih (ya da Mars), Güneş’e ortalama uzaklığı 228 milyon kilometre olan bir yörünge çizer ve bir Merih yılı 687 yer günü sürer. 1877’de bulunan çok küçük iki uydusundan (yakınından geçerken çekim gücüyle yakaladığı küçük gezegenler oldukları sanılır) büyüğü Phobos, yaklaşık 25 km boyunda, 21 km eninde, çevresi düzensiz bir gezegendir. Küçük uydusu Deimor’un çapı, ortalama 8 km’dir.
Merih’in çapı 6.794 km, kütlesi Yer kütlesinin %11’i kadardır. Yüzeyindeki genelçekim, Yer’deki çekimin yüzde 38’i kadardır; yani, Yer’de 70 kg olan bir astronot, Merih’te 27 kg gelecektir. Bu zayıf genelçekim, gezegenin çevresinde önemli bir atmosfer tutulmasına olanak vermemiş ve gaz moleküllerinin büyük bölümünün, uzayda dağılmasına yolaçmıştır. Söz konusu atmosfer tabakasının düşük yoğunluğu, ancak böyle bir olayla açıklanabilir. ABD uzay araçları Mariner 4, 6, 7, 9’un ve SSCB uzay araçları Mars 2 ve 3’ün yardımıyla elde edilen bulgulara göre, çevresinde, 30 km yükseltideki Yer atmosferine eşdeğerli olan seyreltik bir atmosfer vardır.
Ayrıca, 1947’den bu yana tayfçekerlerle elde edilen verilere göre, Merih’in atmosferi Yer’dekinden çok değişiktir ve temel bileşeni azot değil, karbondioksittir. 1963’te aynı yöntemle, 1972’de de Mariner 9 aracıyla sağlanan bulgularsa, Merih atmosferinde çok az su buharı bulunduğunu ortaya koymuştur.
Büyük bir titizlikle arandığı halde, gezegende oksijene rastlanmamıştır. Dolayısıyla, çevre atmosferde, Güneş’in morötesi ışınlarına karşı canlıları koruyacak ozon tabakası yoktur. Öte yandan 1965’te Mariner 4 aracının sağladığı bulgular, Merih’in çevresinde magnetik alan olmadığını kanıtlamıştır. Bu nedenle, uzaydan gelen taneciklere karşı bir ekran görevi yapan Yer çevresindeki Van Allen kuşağına benzer bir oluşuma, gezegenin çevre uzayında rastlanmaz. Bu olgu, Merih yüzeyinin ışınımların ve taneciklerin sürekli bombardımanı altında kaldığı sonucunu verir.
Merih, kendi çevresinde 24 saat 37 dakikada döner. Bu nedenle, Yer ile Merih’te, gece ve gündüz süreleri aşağı yukarı aynıdır; ayrıca, gezegenin dönme ekseninin eğimi, Yer ekseninin eğiminden çok az büyüktür. Dolayısıyla, yıl boyunca gezegenin göğünde Güneş’in yüksekliği değiştiğinden, mevsimler oluşur; ama Yer’dekilere oranla daha uzun sürerler ve sıcaklık değişiklikleri büyük boyutlara ulaşır.
Merih’te atmosferin çok seyreltik olması nedeniyle, günlük sıcaklık değişiklikleri de çok büyüktür. Gezegen ekvatorunda, öğleden az sonra sıcaklık 5° C dolayında olduğu halde, gün batımında -70° C’a düştüğü saptanmıştır. Mariner 9’un gezegenin kutuplarında ölçtüğü sıcaklık, -90° C düzeyindedir.
Merih çevresinde yörüngeye giren uzay sondalarının, özellikle Mariner 9’un topladığı veriler, gezegenle ilgili bilgileri oldukça geliştirmiş, 7.000’i aşkın fotoğraf ve Merih atmosferinin çeşitli bağıl ölçümleri, gezegenin daha iyi tanınmasını sağlamıştır.
Merih önemli jeolojik etkinlikler geçirmiştir; kuşkusuz hala da geçirmektedir. Dağları ve ve yanardağ kraterleri, Yer’de görülenlerden daha geniştir; ekvator bölgesinde, 4.000 km uzunluğunda ve yaklaşık 6.000 m derinliğinde çok büyük bir kanyon gözlemlenmiştir. Zaman zaman 200 km/saat hızla ulaşan rüzgarların ve çok şiddetli fırtınaların, gezegen yüzeyini etkilediği anlaşılmaktadır; nitekim, Mariner 9, yörüngesine varır varmaz, böyle bir olay saptamıştır. Kum, toz, belki de buz billurlarıyla yüklü rüzgarların, engebelerin aşınmasında en önemli etken olduğu sanılmaktadır.
Merih konusundaki önemli sorunlardan biri de, yüzeyinde su bulunmamasıdır. Yanardağ olaylarıyla açıklanamayan dolambaçlı vadilerin fotoğrafları çekilmiş, bazı kraterlerin çevresinde bulutlar gözlemlenmiş ve 20.000 kilometre yükseltiye ulaşan bir hidrojen kuşağı ortaya çıkarılmış olmakla birlikte, söz konusu hidrojenin, Merih’in genelçekim gücünden kurtulan su buharı moleküllerinin ayrışmasından kaynaklandığı düşünülmektedir.
Ayrıca, gezegenin kutuplarında (özellikle Kuzey kutbunda) bulunan ve karbon karından oluştuğu sanılan örtüler, büyük ölçüde, buz halinde su saklayabilir; bu varsayım, gezegen atmosferindeki su buharı oranının düşüklüğünü açıklar.
Bununla birlikte, Merih’te ilkel bir yaşamın bulunup bulunmadığına kesin karar verebilmek için, bilgiler henüz yeterli değildir. Bu konuda, 25 Eylül 1992’de fırlatılan Mars Observer adlı uzay aracının (ABD), önemli veriler sağlayacağı umulmaktadır.

Jüpiter

0 yorum | Devamını Oku...

JÜPİTER
Güneş’e uzaklık açısından beşinci gezegen. Aynı zamanda da kütlesi bakımından en büyük gezegen olan Jüpiter’in kütlesi, bütün gezegenlerin toplam kütlesinin 2,5 katı, Yer’in kütlesininse 318 katıdır. Yoğunluğu (1,3 gr/cm3) nispeten düşük olduğundan, hacmi de Dünya’dan 1.000 kez fazladır. Buna karşılık, Güneş’ten 1.000 kez küçüktür. Jüpiter’in ekseni çevresindeki dönüş hızının yüksek oluşu (her 9 saat 55,5 dakikada bir dolanım) nedeniyle, biçimi büyük ölçüde yassıdır. Ekvator çapının 142.800 km olmasına karşılık, kuzey ve güney kutupları arasındaki uzaklık yalnızca 133.500 km’dir. Jüpiter, Güneş çevresindeki yörüngesini, Yer’in Güneş’e uzaklığının 5,2 katı olan Güneş’e 778,3 milyon km uzaklıkta bulunduğu noktada, 11,9 yılda tamamlar.
Oluşumu, Yapısı, Bileşimi ve İklimi
Jüpiter’in, tıpkı Güneş gibi, en eski Güneş bulutsusunun bir bölümünün genelçekim hızının apansızın düşmesi sonucu oluştuğu varsayılmaktadır. Jüpiter’in çekirdeği (günümüzde bu çekirdek, kütlesi Yer’in kütlesinden birçok kat fazla bir kayaç kütlesidir) oluşunca ve yeterli büyüklüğe ulaşınca, yerçekimi nedeniyle bu çekirdeğin çevresinde bulutsu gazlarından bir tabaka oluşmuştur. Güneş gibi Jüpiter de başlangıçta hidrojen ve helyumdan oluşmuştur ve sıcaklığın yeterince fazla olması nedeniyle, atmosferi altında katı düzlem bulunmaz; yalnızca gaz ile sıvı arasında dereceli bir geçiş sözkonusudur. Gezegen yüzeyinden merkeze uzaklığın yaklaşık dörtte birine ulaşıldığında, sıcaklık ve basınç öylesine artar ki, sıvı, bir metal sıvısı halindedir; bu olguyu fizikçiler, moleküllerin dış yörünge elektronlarından arınmasına bağlamaktadırlar.
Jüpiter’in atmosferinde ayrıca az miktarda su, amonyak, metan, vb. organik bileşikler (karbon gibi) bulunur. Astronomlar, Jüpiter’in atmosferinde birbirlerinden 30 km uzaklıkta üç bulut tabakasının yeraldığını varsaymaktadırlar. En alttaki bulut tabakası buz parçacıkları ve damlacıklarından oluşmuştur; bir üst tabaka, amonyak ve hidrojen sülfür bileşikleri billurlarından, dış tabakaysa amonyak buzlarından oluşmuştur. Gözlemlenen bulutlardan mavi renkli olanlar sıcak, dolayısıyla da en az yüksekliktedir; kahverengi, beyaz ve kırmızı olanlar renk sırasına göre az bir yükseklikten giderek daha yükseğe doğru sıralanır. Bulut tabakalaşmasının bir kimyasal dengesizlikten kaynaklandığı, bulutlara rengini de kükürt, fosfor ve organik bileşiklerin verdiği sanılmaktadır. Söz konusu dengesizliğin yüklü parçacıkların birbiriyle çarpışmasından ileri geldiği düşünülmektedir. 1979’da Jüpiter’in yakınından geçen iki Voyager uzay aracı, gezegenin karanlık yüzünde kutup ışığına benzer bir ışığın varlığını belirlemiştir.
Jüpiter’deki rüzgarlar, gezegen ekvatoruna paralel hava akımları biçiminde hareket ederler. Kimisi doğu, kimisi batı yönünde esen rüzgarların başlıcalarının hızları, iç dolanımlarına bağlı olarak saniyede yüz metreyi bulabilir. Bölgesel hava akımlarının enlemleri, yeryüzünden teleskoplarla gözlemlenen kalın turuncu-kahverengi ve beyazımsı bulut kuşaklarıyla bağıntılıdır. Bulut renkleri arasındaki farklılıklar, gaz miktarlarının bazı bulut kuşaklarında yüksek, bazı kuşaklarda düşük olmasından kaynaklanır.
Jüpiter’in iklim koşulları henüz tam anlamıyla anlaşılamamıştır. Atmosferinde bazısı birkaç gün, bazısı çok daha uzun süren burgaç ve kasırgalar oluşur. Uzun süreli beyaz lekeler ve Yer boyutlarında dev kızıl lekeler gibi büyük boyutlu burgaçlar, varlıklarını uzun süre sürdürürler.

Güneş

0 yorum | Devamını Oku...

GÜNEŞ
Güneş sisteminin merkezinde yeralan, en yakın yıldız, Dünya’dan ortalama 149.591.000 km uzaklıkta, 1,39 milyon km çapında, ışık saçan dev bir gaz küresi olan Güneş’in en önemli bileşeni hidrojendir; yaklaşık % 5 oranında helyum ve daha ağır elementleri içerir. 1,99×10(33) erg/saniye hızıyla enerji üretir. Bu enerji, en çok, görünür ışın ve kızılaltı ışınım olarak uzaya yayılır ve Yer’de yaşamın sürmesinin başlıca nedenidir.
Çapları bin kat daha büyük ve kütleleri birkaç yüz kat daha ağır olan bilinen en büyük yıldızlara karşılaştırılınca, Güneş, astronomi sınıflandırmasında cüce yıldız sınıfına girer. Ama kütlesi ve yarıçapı, Gökadamız’daki (samanyolu) bütün yıldızların ortalama kütlesine ve büyüklüğüne yakındır; çünkü birçok yıldız Yer’den daha küçük ve daha hafiftir. Güneş, tayfı, yüzey sıcaklığı ve rengi nedeniyle, astronomlar tarafından kullanılan tayf türleri şemasında “G2 cüce” diye de sınıflandırılır. Yüzey gazlarının yaydığı ışığın tayf şiddeti, 5000 A’ya yakın dalga boylarında en büyüktür; güneş ışığının niteleyici sarı rengi bundan ileri gelmektedir.
Güneş’le ilgili modern çalışmalar, Galilei’nin güneş lekelerine ilişkin gözlemleriyle ve bu lekelerin hareketlerine dayanarak Güneş’in dönüşünü bulmasıyla 1611’de başladı. Güneş’in büyüklüğüne ve Yer’den uzaklığına ilişkin ilk yaklaşık doğru belirleme, 1684’te yapıldı; bu belirlemede, Fransız Akademisi’nin 1672’de Mars’ın Yer’e yaklaşması sırasında yaptığı nirengi (üçgenleme) gözlemlerinden elde edilen veriler kullanıldı. Joseph von Fraunhofer tarafından 1814’te Güneş’in soğurma çizgili tayfının bulunması ve Gustav Kirchhoff tarafından 1859’da bunun fiziksel yorumunun yapılması, güneş astrofiziği çağını başlattı; bu dönemde, Güneş’i oluşturan maddelerin fiziksel durumunu ve kimyasal bileşimini etkili olarak inceleme olanağı doğdu. 1908’de George Ellery Hale, güneş lekelerinin güçlü magnetik alanlarını belirledi; 1939’da Hans Bethe, güneş enerjisinin oluşumunda nükleer füzyonun oynadığı rolü aydınlattı.
Yeni gelişmeler, bilim adamlarının Güneş’le ilgili görüşlerini değiştirmeyi sürdürmektedir. Güneş rüzgarının doğrudan doğruya belirlenmesi 1962’de gerçekleştirilmiş, Güneş’in yüksek hızlı tekrarlanan akıntılarının kaynaklarıysa 1969’da taç (korona) deliklerine ilişkin gözlemlerle belirlenmiştir.
Yeni Gelişmeler
Güneş’in hala çözülememiş birçok gizi vardır. Sözgelimi, güneş enerjisinin en büyük kaynağı olduğu düşünülen proton-proton tepkimesinin, “nötrino” diye adlandırılan belirli sayıda parçacık da üretiyor olması gerekir; ama günümüze kadar yapılan araştırmalarda, kuramın öngördüğünden çok daha az nötrino belirlenmiştir. İleri sürülen köktenci bir önermeye göre, Güneş, beklendiğinden daha az nötrino üretir; çünkü toplam kütlesinin yaklaşık %0,5’ini oluşturan demir-plazma bir çekirdeği vardır. Bazı fizikçilerse, büyük birleşme kuramlarında öngörülen ve bazen evrendeki “kayıp madde” olduğu ileri sürülen zayıf etkileşimli çok büyük parçacıkların (“Wimp”lerin) Güneş’in derinliklerinde var olabilecekleri ve Güneş’in sıcaklığını, nötrinoların olmayışını açıklayacak kadar düşürebilecekleri biçiminde bir kuram geliştirmişlerdir. Başka bir öneriye göre de, Güneş’in çekirdeğindeki elektron türü nötrinolar, yüzeye doğru ilerlerken, günümüzdeki detektörlerle gözlenemeyen muon türü nötrinolara dönüşmektedir.
1960 yıllarının başlarında, ışıkkürenin ışınım salınımları (osilasyon) belirlenmiştir; o tarihten bu yana söz konusu salınımlar, Güneş’in taşınım kuşağını oluşturan belirli tabakalar arasında “ses dalgalarının rezonant yakalanması” diye açıklanmaktadır. ABD Ulusal Güneş Gözlemevi’nin öncülüğüyle, Küresel Salınım Ağı Grubu, bu salınımları yakından araştırmaktadır. Bu tür araştırmalar sayesinde bilimadamları, ışıkkürenin altında gözlenen Güneş tabakalarının yoğunluk, sıcaklık ve hız kalıplarını irdeleme olanağını elde etmektedirler: Bilimadamları, yaklaşık 80 yıllık bir çevrimle Güneş’in çapının, ortalama çapın aşağı yukarı %0,01’i kadar dalgalandığını da gözlemişlerdir. Daha uzun dönemli genleşip büzülmelerin de söz konusu olabileceği düşünülmektedir.

Kozmos - Kitap Özeti - Evrenin Oluşumunu, Bilinmeyen Yönlerini Göstermek.

0 yorum | Devamını Oku...
KİTABIN ADI

Kozmos

KİTABIN YAZARI

Carl SAGAN / Reşit AŞÇIOĞLU

YAYINEVİ VE ADRESİ

Altın Kitaplar Yayınevi Cağaloğlu / İSTANBUL

BASIM TARİHİ

1997

KİTABIN YAYIM MAKSADI

Evrenin Oluşumunu, Bilinmeyen Yönlerini Göstermek. Geçmişten Günümüze Bu Konudaki Gelişmeleri Aktarmak

KİTABIN ÖZETİ :

Kozmos, olmuş veya olan, ya da olacak herşeydir. Kozmos “düzen içerisinde evren” anlamında kullanılan Yunanca bir sözcüktür ve bir bakıma “karmaşa” anlamına gelen kaos’un karşıtıdır.

İnsanoğlunun yaratılışından beri var olan merak etme hissi, insanı evrenin oluşumu ve bilinmeyenlerini öğrenmeye itmiştir. Aynı zamanda evrende meydana gelen olayların tek düzen olmayışı ve sürekli değişken oluşu, insanoğlunun merakını daha da cezbetmiştir. Bilinmeyeni öğrenmek insanı sevindirdiği gibi, bilginin hayatta kalabilmenin de ön koşulu olduğu anlaşılmıştır. “Bilinende sınır vardır, bilinmeyende sınır yoktur. İnsan aklı anlaşılmazlığın derin okyanusunda barınacak bir ada sağlar. Her kuşağa düşen iş, bu okyanustaki adaya biraz daha toprak katarak büyütmektir.” (Huxley) Buradan da anlaşılacağı gibi bilinmeyeni öğrenmenin yanısıra öğrenilenlerin de diğer kuşaklara aktarılması büyük önem taşımaktadır.

Kozmos insan aklının alamayacağı ve dünyadaki ölçülerin yetmeyeceği kadar büyüklüğe ve genişliğe sahiptir. Kozmos’ ta ölçü olarak ışık hızı (saniyede 300.000 km.) kullanılmaktadır. Kozmos’ un enginliğinde yerküremizin bulunduğu galaksiler gibi binlerce galaksi mevcuttur. Samanyolu’nda karmaşık ama uyumlu biçimde dolaşan her türden 400 milyar yıldız yer alır. Bu engin denizde yer küremizin küçük bir dünya olduğu ilk olarak önemli keşiflerin yapıldığı Ortadoğu’ da aydınlığa kavuşmuştur. M.Ö. 3 ncü yüzyılda o dönemin önemli metropellerinden Mısır’ın İskenderiye kentinde bir çok bilim adamı yaşamakyaydı ve büyük bir kütüphaneye sahipti. İskenderiye’ de yaşayan bilginlerden Eratostenes okuduğu bir kitapta ilginç bir gözleme rastlamıştır. Kitapta Syene adlı kasabada 21 Haziran günü yere dikilen sopaların yere gölge yapmadıklarına ilişkin yazıya rastladı. Yaz günlerinin en uzun olduğu gün dönümünde, saat öğlene yaklaştıkça gölgelerin kısaldığı tam öğle vaktinde gölgenin yok olduğundan bahsediliyordu. Eratostenes bir bilim adamı olarak normal bir olay gibi görünen bu olayı bir deney yaparak kendi de gözlemledi. Erastotenes 21 Haziran gününde İskenderiye’ ye dikilen sopaların gölge yaptıklarını gözlemledi. Syene’ de dikilen sopalar gölge yapmıyordu da bir hayli kuzeyinde bulunan İskenderiye’ de gölge oluşuyordu. İki deneyden de yola çıkarak yeni verilere ulaştı. Eğer her iki şehirde de güneşin tam tepede olduğu vakitte gölge oluşmasaydı yeryüzünün düz olduğu sonucu çıkardı. Fakat Syene’ de hiç gölge yokken İskenderiye’ de gölge oluşumu Dünya’nın yuvarlaklığının ispatıydı. Aynı zamanda Eratostenes yaptığı hesaplamalarla Dünya’ nın çevre uzaklığını da bulmuştu. Yaptığı hesaplamalarda hatalar olmasına rağmen bunu 2200 yıl önce bulduğuna göre pek hatalı sayılmazdı. Erastotsenes’ in yaptığı deneyleri, ölçümleri ve düzenlediği deniz keşifleriyle birçok denizciyi yüreklendirmiştir. Macellan, Erastotenes’ in eserlerinden ve diğer kaşiflerin yaptığı denemelerden faydalanarak Dünya’ nın çevresini deniz yoluyla dolaşan ilk insan olmuştur.

İnsanoğlu yağtığı deniz seferleriyle keşiflere hız vermiş yeni coğrafi bölgeler keşfetmiştir. Bu keşifler Kristof Kolomb’un Amerika kıtasını keşfiyle doruk noktasına ulaşmıştır. Kristof Kolomb da Macellan gibi Eratostenes’ in eserlerinden büyük ölçüde yararlanmıştır. Milattan önce üçüncü yüzyılda başlayan altıyüzyıllık serüven bizi uzay kıyılarına taşımıştır. Dünyada yapılan keşiflerin bitmesi üzerine hedef uzayda gezegenlere yönelmiştir. Ayrıca Dünya’ nın oluşumundan bu yana canlıların üzerinde yapılan incelemelerde, yerküre oluşumu esnasında bulunan gazlar o dönemde bolca oluşan yıldırımlardan etkilenerek tek hücreli canlılar meydana getirmiştir. Bunlar zamanla ortamdan dolayı değişime uğrayıp, üreyip çoğalmışlardır. Evrimle değişen canlılar, insanoğlunun ve tabiatın etkisiyle, kimi zamanımıza kadar ulaşmış, kimi de yok olup gitmiştir. Hiçbir şeyin değişmediği bir gezegende yaşıyor olsaydık, yapılacak pek az iş olurdu. Düşünüp bulacak bir şey kalmazdı. İnsanoğlu her döneminde uzayı merak etmiş, becerileri gökyüzüne bakarak gezegenlere, yıldızlara ve yıldızların oluşturduğu gruplara yapılan benzetmelere göre isimler verilmiştir. Örneğin Büyük Ayı, Çoban Yıldızı vb., Kepler adlı bilgin, Pitagoras’ ın üç boyutlu cisimlerinden faydalanarak Güneş Sistemi erafındaki gezegenleri keşfetmiştir. Gezegenlerin daha önceleri dairesel yol izledikleri düşünülmüş ve daireyi de mükemmel geometrik şekil diye adlandırmışlardır. Kepler, Tyoho adlı bilginin de gözlemlerinden faydalanarak gezegenlerin elips çizerek döndüğünü saptamıştır. Gezegenlerin Güneş’ in yörüngesi etrafında yörüngelerini terk etmeden dolaşması, Newton’ın dikkatini çekmiş gizli bir çekim gücü olduğunu düşünmüştür. Daha sonra yaptığı gözlemlerle çekim gücünü bulan ilk kişidir. Zaman zaman dünyanın atmosferine giren kuyruk yıldızlar, insanların üzerine büyük etkiler yaratmıştır. Bunlardan en büyüğü Halley kuyruklu yıldızıdır. İnsanlar dünyanın batacağına inanmışlar paniğe kapılmışlardır. Önemsemedikleri astronomların açıklamalarıyla rahatlamışlardır. Her dönemde olduğu gibi bilim adamlarına çoğu zaman inanılmamıştır. Yapılan birçok buluşu tanrıya karşı gelmek suçlamasıyla bilim adamları cezalandırılmıştır.

Bilim adamları çoğu zaman geçimlerini temin etmek için araştırmalarına ara vermiştir. Ya da bir çok düşüncelerini ellerindeki kaynakların yetersizliğinden gerçekleştirememişlerdir. Hatta bazı dönemlerde birtakım irticacı din adamları tarafından afaroz edilerek toplumdan soyutlanmışlardır. Yüzyıllar geçtikçe teknoloji ve bilim ilerlemiş uzay araçlarıyla uzaya keşifler düzenlenmiştir. Mor ötesi ve kızıl ötesi ışınlar kullanılarak daha uzaklardaki gezegen ve galaksiler hakkında bilgi edinilmiştir. Diğer gezegenlerdeki hayat kaynakları araştırılmış başka dünyalara ve yaşayan canlıların olduğu düşünülerek uzaya radyo sinyalleri gönderilmiştir. Uzaya gönderilen uzay gemileri dünya üzerindeki canlılar hakkında bilgi veren plaklar konulmuştur. Venüs’ ün atmosferinde yapılan gözlemlerde büyük su kütlelerine rastlanmış, buradan yola çıkılarak canlıların yaşayabileceği düşünülmüştür Venüs’ün üzerinde büyük su kütleleri olduğu düşünülmüş, su kaynaklarında tek hücreli canlıların bulunacağı düşünülmüştür. Daha sonra yapılan araştırmalar sonucu Venüs’ teki atmosferin karbonhidratla kapalı olduğu ve yüzeyin çok sıcak olduğu tespit edilmiştir. Atmosferdeki karbonhidrattan ve yüzeydeki sıcaklıktan dolayı suyun buharlaşarak kaybolduğu kanısına varılmıştır.

Hayat olabileceği varsayımlarının en çok yoğunlaştığı gezegen ise Mars gezegenidir. Mars yapı itibariyle Dünya’ mıza birçok benzerliği bulunması dolayısıyla bu tür varsayımlar Mars gezegeni üzerinde daha da yoğunlaşmıştır. Fakat yapılan incelemelerde şu ana kadar Mars’ ın üzerinde herhangi bir hayat kaynağına rastlanamamıştır. Mars’ ta yaşamın olmayışına ait deliller vardır. Bunlar oksijenin azlığı insanların solumasını engeller ve ozon tabakasının ince olmasından dolayı Güneş’ in mikrop öldürücü mor ötesi ışınları direk geçmektedir. Fakat bu delillere rağmen Mars’ ın üzerinde büyük su birikintileri oluşmuştur. Dünya’ daki tek hücreli canlıların bazılarının da Mars’ ta yaşayabildikleri gözlenmiştir. Yapılan araştırmalarda uzaydan bir takım sinyaller alındığı ve insanlardan daha akıllı varlıkların yaşadığı varsayılmaktadır.

Teknolojide bilimde meydana gelen gelişmelerin yanı sıra insanoğlu evrimin etkisiyle zihinsel gelişiminde de değişmeler meydana gelmiştir. Bilim öncesi zamanlar düşünüldüğünde kitaplıkların henüz bulunmadığı zamanlarda zeki merak dolu ve hem toplumsal hem cinsel konulara karşı ilgi duyardık. O dönemlerde henüz deneyler gerçekleşmemiş, icatlar gün ışığına çıkmamıştı. Ateşin bile ilk kez bulunduğu dönemlerde insanlar, yıldızlar ve gezegenler hakkında neler düşünüyorlardı acaba? İnsanlar o dönemlerde daha yeni yeni çevrelerini ve doğayı keşfediyorlardı. Çevrede hangi otların yenilip yenilmeyeceği hakkında denemelerde bulunuyorlardı. Edindikleri deneyimleri kendilerinden sonraki nesillere aktarıyorlardı. Daha sonra av malzemeleri yaparak karınlarını doyurmak için hayvanları avlamaya başladılar. Avlanma esnasında hayvanlardan da zarar görme ihtimalleri olduğu için onları iyice etüd ediyor, ne yiyip ne içtiklerini, nasıl ürediklerini dikkatlice gözlemliyorlardı.

İnsanlar yaşam mücadelerlerinin yanısıra doğada meydana gelen olaylar da onları derinden etkiliyordu. Gök gürlemesi fırtına çıkması vb. olaylar onları ürkütüyordu. Geceleri uzandıkları yerden engin uzay boşluğuna baktıklarında ışıklı her noktayı incelediklerinde ve bunları bir araya getirdiklerinde gözlerinin önüne çeşitli şekiller getirmişler ve bunlara çevrelerindeki hayvanların ve cisimlerin isimlerini takmışlardır. Doğada meydana gelen her olayın tanrıların kontrolünde olduğuna inanıyorlardı. Tanrıların durumlarının iyi olduğu zamanlarda bolluk ve bereket olduğuna, tanrıların kızgın zamanlarında ise başlarına büyük felaketler geleceğine inanıyorlardı. Fırtına çıkması, deprem olması, kuraklık olması vb. Ne var ki tanrılar kaprisli olduklarında tutumlarından emin olunamazdı. Onların gözünde doğa bir giz kutusuydu. Dünyayı anlamak zordu. Yüzyıllar geçtikçe insanların fikirleri değişmiş, büyük medeniyeler meydana gelmişti. Bundan 2500 yıl önce İyonya’ da her şeyin atomdan oluştuğuna inanan insanlar meydana çıktı. Hastalıkların şeytan işi olmadığına inanan insanların sayısı artmıştı. Yüzyıllar geçtikçe daha büyük medeniyetler oluşmuş bir çok icat ve keşiflerle insanoğlu büyük yollar kat etmiştir. Çinlilerin kağıdı ve basım aracını icadı ile roketler, saatler ve okyanuslara açılan teknelerin bulunuşuyla günümüze dek büyük gelişmeler meydana gelmiştir.

Sonuç olarak teknolojinin gelişmesiyle birlikte yeni gelişmelerin iyi yönde kullanılmasının yanısıra, teknoloji insanların birbirini yok etmesi maksadıyla da kullanılmıştır. Dönem dönem dünyaya zulümle, savaşla hükmederek kontrolü altına almak isteyen hasta ruhlu insanlar da gelmiştir. Sonuçta nükleer silahların bulunmasıyla insanoğlu birbirlerini yok etme yarışına girdiler. Bu aşamada nükleer silahı bulan Amerikalılar olmuştur. Amerikan bombası olursa, Sovyetler Birliği’ nin de olması gerekirdi. Ardından İngilizler, Fransızlar, Çinliler ve Pakistanlılar da nükleer silah elde etmek için çabaladılar ve emellerine ulaştılar. İkinci Dünya Savaşında yirmi ton TNT kullanıldı. Bu bir kentin bir semtini yıkıp yakacak bir güce sahipti. Savaşta tüm kentlere atılan bombaların tutarı iki milyon tondur. Sovyetler Birliği de ABD’ nin ellerindeki nükleer silahlar, savaşta atılan tüm bombaların gücüne sahiptir ve her iki ülkenin destratejik bombardıman güçlerinin 15 bin hedefi tehdit ettiği bilinmektedir. Ellerindeki silahlarla İkinci Dünya Savaşı’ nda altı yılda yapılan tahribatı altı saatte yapacak silahlar mevcuttur. Demek oluyor ki yer küremizde geleceği garantili hiçbir bölge yoktur. Aynı zamanda dünyamızdaki kaynakların giderek azalması teknolojinin getirdiği kirliliğin artmasıyla yaşam daha dazorlaşmıştır. Gelişen teknoloji ve bilimin ışığında belki ilerleyen yıllarda uzaydaki yaşamın en uygun olduğu koloniler kurulabilir. Ya da burada kullanılabilecek kaynaklardan faydalanılabilir. Uzay araştırmalarında öncelikle Rusya ve ABD’ nin başlattığı çalışmalar, İngiltere, Fransa ve Çin’ in çalışmalarıyla da hız kazanmıştır. Hatta ülkeler arasındaki gücün sembolü olmuştur. Kitabın başında da bahsedildiği gibi hayatta kalabilmenin ön koşulu bilim olmuştur. Günümüzde de ticari, sosyal, ekonomik ve askeri alanda bir ülkenin büyüklüğü teknolojinin gelişimine bağlıdır. İnsanoğlu aklı ve hayal gücüyle birçok bilinmeyeni bulmaya elverişlidir. Bizlere düşen en büyük görev bilime ve bilim adamlarına önem vermektir.

Ülkemizin geçmişinde ve günümüzde birçok değerli bilim adamı çıkmasına rağmen bunlar gerici zihniyetlerin engeline takılmış, yeterince kaynak sağlanamamıştır. Eğer bizler de diğer devletler arasında büyük bir güce sahip olmak istiyorsak bu konudaki çalışmalara hız kazandırmalıyız. Buna insan potansiyeli olarak sahibiz. Büyük önder Atatürk’ ün de Onuncu Yıl Nutku’ nda belirttiği gibi “Türk Milleti Zekidir, Çalışkandır.” övgülerine layık olmalıyız.

Not : Kitap özetlerindeki fikirler yazarların özel fikirlerini yansıtmaktadır.

Doğu Ekspresinde Cinayet

0 yorum | Devamını Oku...
KİTABIN ADI

Doğu Ekspresinde Cinayet

KİTABIN YAZARI

Agatha Christie / Gönül Suveren

YAYINEVİ VE ADRESİ

Altın Kitaplar Yayınevi Cağaloğlu / İSTANBUL

BASIM TARİHİ

Ocak 1986

KİTABIN YAYIM MAKSADI

Trende Yaşanan Cinayetin Anlatılması

KİTABIN ÖZETİ :

Cinayete kurban olan kişi, Bay Rachett adıyla anılmaktadır. Ve daha sonra gerçek adının Cassetti olduğu ortaya çıkacaktır. Kendisinin öldürüleceğinin farkına varmış ve korunması için aynı trende bulunan dedektif Poirot’a yirmibin dolar teklif etmiş, fakat Bay Poirot adamın tehlikeli biri olabileceğini dedektiflik içgüdüsünün de yardımıyla sezinleyerek kabul etmemiştir.

Cassetti’nin öldürülme sebebi, daha önce çocuk kaçırma olaylarına karışmış olmasıdır. En son ise Amerika’nın tanınmış ailelerinden Armstrong’ların kızını kaçırmış ve fidye istemiş, daha sonra ise de çocuğu öldürmüştür.

Cinayetin aydınlatılma işini Ekspresin müdürlerinden olan Bay Bouc, Poirat’a teklif eder, o da bunu kabul eder ve ipuçlarını o anda trende bulunan doktoru da yanlarına alarak, üçü araştırmaya başlarlar. Cinayeti ortaya çıkarabilecek dört ipucu bulunur;

Bunlar bir kondüktör elbisesi düğmesi, bir pipo temizleyici, üzerinde H harfi bulunan değerli bir mendil ve cinayetin saatini bulmalarına yardımcı olabilecek 01:15’i gösteren durmuş saat, doktor da yaptığı incelemeler sonucunda cinayetin 00:00 ile 02:00 arasında işlenmiş olduğunu ortaya koyar.

Şimdi bir de trende bulunan yolculara göz atalım: Albay Arbuthnot Hindistan’daki görevini bitirerek İngiltere’ye dönmekte, daha sonra aralarında bir ilişki anlaşılan Mary Debenham ise, 25 yaşlarında mürebbiyelik yapan biridir. Mac Queen Rachett’in sekreteri, Prenses Natalia Dragomiroff, yaşlı, soğukkanlı ve son derece çirkin olmasına rağmen güçlü bir kişiliğe sahiptir. Caroline Hubbard, hep kızından bahseden orta yaşlı geveze bir kadın, Masterman ise Rachett’ın uşağıdır. Michel yıllardan beri aynı hatta çalışan kondüktördür. Trende seyahat eden 13 yolcudan diğer altısının isimleri ise, Greta Ohlsson, Kont ve Kontes Andrenyi, Cyrus Hardman, Foscarelli, ve Hildegarde Schmidt’tir.

Delilleri incelemeye ve tanıkları dinlemeye başlayan üçlü, ipuçlarını yavaş yavaş çözerek sonuca ulaşmaya başlarlar. Bu süreçte İstanbul Calais vagonundaki yolcuları tek tek sorgular, cinayetin işlendiği gece koridorlarda gezen kırmızı kimonolu bir kadın saptanır. Cinayeti iki kişinin işlediği kanısına varırlar. Bunun sebebi cesedin üzerindeki bıçak yaralarının fasılalarla açıldığıdır. Tariflere göre cinayeti işleyen esmer, kısa boylu, zayıf ve ince kadın sesli biridir. Bu da cinayeti biri kadın biri erkek iki kişinin işlediği kanısını ortaya koyar.

Cesette on iki adet yara bulunmakta, vagondaki tek pipo içicisinin Albay Arbuthnot olduğu anlaşılır. Düğmelerin bulunduğu üniformayı ise sadece kondüktör giymektedir. Trende H harfiyle başlayan isme sahip biri de bulunmamakta, tüm kapıları kilitli olan trene dışarıdan yolcu binmediğine göre, katil vagonun içerisindedir. İçerideki on üç kişiden biridir ama hangisi?

Kitabın bundan sonraki bölümleri daha da ilginç ve sürükleyicidir. Hercule Poirot hemen her yolcunun bu cinayeti işleyebileceği ihtimaline karşın olanca titizliğiyle onları dinlemeye devam eder. Her birinin cinayeti nasıl ve ne amaçla yapabileceklerini kurgular; ancak hiçbirinin bu işi yapmamış olduklarına dair veriler de mevcuttur. Dışarıdan biri de vagona binmediğine göre bu cinayeti kim planlanmış ve yapmıştır?

Kitap oldukça ilginç ve akla gelmeyecek bir biçimde sonlanır. Poirot ince zekası sayesinde cinayeti çözmüş, en son vagondaki tüm yolcuları yemek salonuna toplar ve cinayeti açıklar. İki ihtimal vardır, birincisini salondakilere anlattığında yolcular bunu fazla inandırıcı bulmaz. İkinci ihtimal ise doğru senaryodur. Fakat bu da yolculardan hiçbirinin işine gelmez.

Her zaman gerçekler doğru olanı ya da olması gerekeni ortaya koymamakta, veya bazı işler öyle olması gerektiği için olmuştur. Birinci ihtimalin tüm yolcular, dedektif, ekspresin müdürü ve doktor tarafından kabul edilmiş olmasının sebebi budur.

Not : Kitap özetlerindeki fikirler yazarların özel fikirlerini yansıtmaktadır.

Güneş Sistemi Ve Uzay

0 yorum | Devamını Oku...

GÜNEŞ SİSTEMİ VE UZAY EVRENİN DOĞUŞU VE GÜNEŞ SİSTEMİNİN MEYDANA GELİŞİ




Evrenin büyük patlama ile başladığı,patlama anında evrenin sıfır büyüklükte ve bu nedenle sonsuz sıcaklıkta olduğu düşünülmektedir.

Ama evren genişledikçe ışımanın sıcaklığı düşmüş ve genişleme hızlanmıştır.Patlamadan sonraki 1 milyon yıl içinde evren yalnızca genişlemeyi sürdürmüş,sıcaklık giderek birkaç bin dereceye düşünce,elektron ile çekirdekler aralarındaki elektromanyetik çekime dayanamayarak atomları oluşturmaya başlamıştır.

Genişleme ve soğumalar sürerek bazı bölgelerde çökmeler oluşup,bölge yeterince küçülünce dönerek GALAKSİLER meydana gelmiştir.Galaksiler zamanla küçük bulutlara dönüşmüş,bulutlar büzüldükçe yıldızlar oluşmuştur.

Güneş’te böyle oluşmuştur.

Kütlesel Çekim

0 yorum | Devamını Oku...

KÜTLESEL ÇEKİM
Yukarı atılan bir cisim, bir süre sonra döner ve yere düşer. Irmaklar hep yukarıdan aşağıya doğru akar. Bunun açıklamasını "yerçekimi" olarak yaparız. Bu, tüm kütleli nesnelerde, gezegenlerde ve yıldızda varolan bir kuvvettir ve ona "kütle çekimi" diyoruz.
Bu çekim, en yoğun cisimeleri ve "boşluğu" eşit oranda donatır. Ondan korunmanın ya da onu etkilemenin hiçbir yolu yok. Uzaklıkla azalır; ama hiçbir şekilde kaybolmaz. Atmosferi Yerküre’nin çevresinde tutan kuvvet ya da bizim Evren boşluğuna uçup gitmemizi engelleyen kuvvet, Dünya’nın uyguladığı kütle çekimi kuvvetidir.
Bir yapma uyduyu, Dünya yörüngesine yerleştirmek için gerekli hız, saniyede 8 kilometreden (8 km/s) az değildir. Dünya’nın çekiminden kurtulmak ve onu temelli terketmek için saniyede 11.2 kilometre hız yapmak gerekir. Güneş’in kütle çekimi daha büyüktür. Çünkü Güneş’in kütlesi, Dünya’nınkinin 400 bin katıdır. Güneş’in kütlesel çekimini aşabilmek için saniyede 16.7 kilometrelik hız gerekir.
Kuşkusuz insanoğlu çok eski zamanlarda da kütle çekimini sezmiş ve onu hesaba katmış olmalı. İlginçtir, bilinen bu eski kuvvet, çağlar boyu açıklanamamış olarak kaldı. Kütle çekimi için bilimsel bir kuram geliştiren ve bunu Evren’i kapsayacak kadar genişleten, büyük İngiliz bilimcisi Sir Isaac Newton (1642-1727) idi.
Masa üzerindeki bir kitabı inceleyelim. Kitaba herhangi bir etki olmadıkça kitap, masa üzerinde hareketsiz kalır. Şimdi, kitabı yatay doğrultuda sürtünme kuvvetini yenecek büyüklükte bir kuvvetle sağa doğru itelim. Sürtünme kuvveti kitapla masa arasında varolan bir kuvvettir.
Kitaba uygulanan kuvvet, sürtünme kuvvetine eşit ve zıt yönlü ise kitap sabit bir hızla hareket edebilecektir. Uygulanan kuvvet sürtünme kuvvetinden büyükse kitap ivmelenir. Uygulanan kuvvet ortadan kalkarsa sürtünme kuvvetinin etkisi ile kısa bir süre hareket ettikten sonra durur (negatif ivmelenme sonucu).
Şimdi, kitabın karşıdan karşıya kaygan hale getirilmiş yüzeyde itildiğini düşünelim. Kitap, yine duracak fakat önceki durumda olduğu gibi çabucak durmayacaktır. Döşemeyi, sürtünmeyi tamamen ortadan kaldıracak kadar cilalar, parlatırsanız kitap, bir defa harekete geçtikten sonra, karşı duvara çarpıncaya kadar aynı hızla hareket edecektir.
Galileo, cisimler hareket halinde iken, durmaya ve hızlanmaya direnme (eylemsizlik) tabitanıa sahip olduğu sonucuna da varmıştı. Bu yeni yaklaşım daha sonra Newton tarafından formülleştirilerek, kendi adıyla anılan Newton’un "Birinci Hareket Yasası" olarak tanımış ve şöyle ifade edilmiştir: "Bir cisme bir dış kuvvet (bileşke kuvvet) etki etmedikçe, cisim durgun ise durgun kalacak, hareketli ise sabit hızla doğrusal hareketine devam edecektir."
Daha basit bir anlatımla, bir cisme etki eden net kuvvet sıfırsa ivmesi de sıfırdır. Newton’un birinci yasası, bir cisme etki eden dış kuvvetlerin bileşkesi sıfır olduğu zaman cismin davranışındaki değişmeleri inceler. Bir cisim üzerine sıfırdan farklı bir bileşke kuvvet etki ettiği zaman neler olur? Bu sorunun yanıtını Newton’un ikinci yasası verir.
Çok düzgün, cilalı, parlatılmış yatay bir yüzey üzerinde, sürtünme kuvvetini önemsemeyerek bir buz kalıbını ittiğinizi düşünün. Buz kalıbı üzerinde yatay bir F kuvveti uygularsanız, kalıp "a" ivmesi ile hareket edecektir. Kuvveti iki katına çıkarırsanız ivme de iki katına çıkacaktır. Bu tür gözlemlerden bir cismin ivmesinin, ona etkiyen bileşke kuvvet ile doğru orantılı olduğu sonucuna varırız.
Peki bileşke kuvveti aynı tutarken cismin kütlesini iki katına çakrsak ne olur? İvme yarısına düşer; üç katına çıkarılırsa üçte birine düşer. Bu gözleme göre, bir cismin ivmesinin kütlesi ile ters orantılıdır. Buna göre Newton’un ikinci yasası şöyle anlatılabilir: "Bir cismin ivmesi, ona etki eden kuvvetle doğru orantılı, kütle ile ters orantılıdır."
Elbette ki gezegenler, Kepler Yasalarına göre hareket ediyordu. Ama neden gezegenler değişik ve üstelik düzgün bir hızla hareket etmiyordu? Gezegenlerin gökyüzünde hareket etmeleri için onları "iten" bir gücün olması gerektiği düşünülüyordu. Ama bu güç neydi? Newton’un yaşadığı dönemde hiç olmazsa birçok insan astrolojiyi ciddiye almıyordu; yani gezegenleri meleklerin itmediği kesindi. Newton, Kepler’in formüllerini çıkarmak için kütlesel çekim (gravitasyonal alan) yasasını kullanmştı.
Newton, Galileo’nun sarkaç deneylerini inceledi ve buradan boşlukta serbestçe dolaşan gezegenlere etkiyen bir çekimin bulunması gerektiği sonucuna kolayca vardı. Çünkü o, düşünür ve matematikçiydi. Gezegenler, eliptik yörüngeler izliyordu. Bu yörüngeler üzerinde dolanırken Güneş’e daha yakın oldukları yerlerde hızları artıyor, sonra Güneş’ten uzaklaştıkça hızları azalıyordu.
Newton, kuvvet bilinirse, bunu kütle denen büyüklüğe bölünce ivmenin bulunabileceğini varsaymıştır. Burada kütle, harekete karşı koymanın bir çeşiti olarak görünür: kütlesi bir başka arabanınkinin iki katı olan çok yüklü bir araba, aynı beygirin etkisi altında birincinin yarısı kadar bir ivme kazanır.
Kısacası kütle, hareket edenin eylemsizliğini bildirir ve bu yüzden ona "eylemsizlik kütlesi" adı verilir. Buna göre her cismin, olanaklı bütün kuvvetlere karşı gösterebileceği tepkiyi belirleyen özel bir eylemsizliği vardır. Bunu saptadıktan sonra geriye kuvvet denen şeyin ne olduğunu anlamak kalıyordu.
Newton kuvveti şöyle tanımlaıyor: Kuvvet, cisimleri hareketsizlik durumu ya da düzgün hareketei değiştirecek biçimde etkileyen bir eylemdir. merkezcil bir kuvvet, cisimleri bir merkeze ya da belli bir noktaya doğru çeker ya da çekilme eğilimi içinde bulunmalarına yolaçar.
Böylece Dünya, Ay’etkilediği zaman ona bir kuvvet uyguluyordu. Ay, Dünya’dan ne kadar uzaksa bu kuvvet de o kadar zayıftı. Daha kesin olarak söylenirse Newton, uzaklık iki kat olunca, kuvvetin ilk değerinin dörtte birine indiğini varsaydı. İki madde birbirlerini kütllelerinin çarpımı ile doğru. aralarındaki uzaklığın karesi ile ters orantılı bir kuvvetle çeker. Bunların hepsi çekim sabiti denen evrensel bir sabitle çarpılır.
İki elektrik yükü arasındaki kuvvet de aralarındaki uzaklığın karesi ile ters orantılıdır ama; bunun kütle ile hiçbir ilgisi yoktur. "Evrensel kütle çekimi yasası" nda, kütlenin rolünün birden değiştiğine dikkat edelim. Kütlenin bu yeni görevini iyice belirtmek için, ağırlık katsayısı (çekim sabiti) ortaya çıktığında buna "çekim kütlesi" denmesi uygun görüldü. O halde Newton’un varsayımı şöyle dile getirilebilir: Çekim kütlesi, eylemsizlik kütlesine eşittir.
Bu özelliğin, ister Ay kadar büyük, isterse Ay modülü kadar küçük olsun bir gök cisminin yörüngesinin kütlesinden bağımsız olarak aynı olduğu sonucunu vermesi ilginçtir.
Newton, kütle çekimi yasasını çok farklı olaylara uyguladı ve onu bilinen Evrenin tümünü kapsayacak şekilde cesaretle yaygınlatırdı. Merkür’ün yaramazlığı dışında bir sorunla karşılaşmadan 200 yıl kendini korudu.
Kütleçekim alanlarının temel nitelikleri şöyle sıralanabilir:
·Kütle çekim kuvvetleri Evrenseldir. Yani Evrendeki her cisim bu kuvvetlerden etkilenir.
·Bir kütle çekim alanı mutlaka çekici kuvvetlere neden olur.
·Kütleçekim alanları, uzun erimlidir; yani bir cismin etrafında oluşan çekim alanının etkileri zayıflayarak da olsa çok uzak mesafelere kadar uzanabilir.
"Duran iki cisim düşünüldüğünde, bu iki cismin birbirine etki ettirdiği çekim kuvveti; cisimlerin arasındaki uzaklığın karesi ile ters, cisimlerin kütleleri ile doğru orantılıdır." Newton böylece doğanın temel sabitlerinden birini de bulmuştu.
Newton, bir matematik sihirbazıydı. Çünkü çok uzun süre onun dışında kimse diferansiyel denklemlerin içinden çıkamıyordu. Newton’dan 60 - 70 yıl önce, büyük Alman bilim adamı Johannes Kepler ( 1571-1630), gezegenlerin Güneş çevresindeki hareketlerini yöneten temel yasaları bulmuştu.
Tarihçe kısaca şöyledir: Eski bilginler gezegenlerin gökyüzündeki hareketlerini gözlemleyerek onların Dünya ile birlikte Güneş çevresinde döndüğü sonucuna vardılar. Bu sonuç daha sonra Copernicus tarafından da bağımsız olarak keşfedildi .İnsanlar keşfin daha önce yapıldığını unutmuşlardı. Bundan sonra araştırılacak soru şuydu: Güneş çevresinde tam olarak nasıl dönüyorlardı?
Güneş’in merkez olduğu bir çember üzerinde mi, yoksa başka bir eğri boyunca mı? Hızları neydi? Bunların yanıtlanması daha zun zaman aldı. Copernicus sonrası dönemler, gezegenlerin gerçekten Dünya’yla birlikte Güneş etrafında mı döndükleri, yoksa Dünya’nın Evren!in merkezinde mi olduğu sorularının tartışıldığı dönemlerdi.
Daha sonra Danimarkalı astronom Tycho Brahe (1546-1601), soruyu yanıtlamak için bir yöntem önerdi. Eğer gezegenler çok dikkatle gözlenip gökyüzündeki yerleri tam olarak kaydedilirse, teorilerin durumu belki açıklığa kavuşabilirdi. Bu, modern bilimin anahtarı ve doğanın gerçekten anlaşılmasının başlangıcı oldu: birşeyi gözlelek, ayrıntıları kaydetmek ve bu bilgilerin şu veya bu yorumu çıkarmayı sağlayacak ipuçlarını içerdiğini ummak.
Zengin bir kişi olan Tycho’nun Kopenhag yakınlarında bir adası vardı. Buraya pirinçten yapılmış kocaman daireler yerleştirdi ve özel gözlem yerleri yaptırdı; sonra, geceler boyunca gezegenlerin konumlarını kaydetti. İşte ancak bu tür yorucu ve yoğun çalışmalar yoluyla birşeyler bulunabilir.
Toplanan bütün bilgi Kepler’in eline verildi; o da gezegenlerin Güneş etrafında ne türlü bir hareket yaptığını incelemeye koyuldu. Bunun için deneme yanılma yöntemini uyguladı. Bir ara yanıtı bulduğunu sandı: Gezegenler, Güneş’in merkez olduğu çemberler üzerinde hareket ediyorlardı. Ancak daha sonra bir gezegenin, Mars’ın sekiz dakikalık bir yay kadar sapma yaptığını farketti.
Kepler, Tycho Brahe’nin bu ölçüde bir hata yapamayacağını düşünüp, yanıtın doğru olmadığı sonucuna vardı. Deneylerin çok dikkatli yapılmış olması nedeniyle başka bir yol deneyerek sonunda üç şey keşfetti. İlk olarak, gezegenler Güneş’in odak olduğu elips şeklinde bir yörünge izliyorlardı.
Elips bütün ressamların bildiği bir eğridir: basık bir daire. Çocuklar da onu iyi bilir; iki ucu tesbit edilmiş bir ipe bir halka geçirip halkaya da bir kalem sokulunca elips çizilebileceğini birileri onlara söylemiştir.
İkinci olarak, bir gezegenin Güneş çevresindeki yörüngesi bir elipstir; Güneş de odakların birindedir. Bundan sonra gelen soru şuydu: Güneş’e yaklaştıkça hızı artıyor, uzaklaştıkça yavaşlıyor mu?
Kepler, bunun da yanıtını buldu. Bulduğu yanıt şöyle açıklanabilir: Örneğin üç hafta gibi belirli bir ara içeren iki farklı zamanda gezegenin konumun saptayalım. Sonra, yörüngenin başka bir bölümünde, gezegenin yine üç hafta ara ile iki ayrı konumunu saptayalım ve Güneş’le gezegeni birleştiren doğruları çizelim (bilimsel deyimiyle bunlar yarıçap vektörleridir).
Üç hafta ara ile çizilen iki doğru ve yörenge arasında kalan alan, yörüngenin her bölgesi için aynıdır. Demek ki, gezegen Güneş’e daha yakın olduğu yerlerde daha hızlı hareket ediyor ve uzaklaştıkça aynı alanı taramak için daha yavaş ilerliyor.
Birkaç yıl sonra Kepler, üçüncü bir kural keşfetti. Bu kural yalnızca tek bir gezegenin Güneş çevresindeki hareketiyle ilgili değildi; farklı gezegenler arasında da ilişki kuruyordu. Bu kurala göre, bir gezegenin Güneş çevresinde tam bir devir yapması için gereken zaman, yörüngenin boyutuna bağlıdır; bu zaman da yörüngenin boyutunun küpünün kare kökü ile orantılıdır. Yörüngenin boyutu elipsin en büyük çapıdır.
Kepler’in bu üç yasası şu şekilde özetlenebilir: Yörünge bir elipstir; eşit sürelerde eşit alanlar taranır ve bir devir için geçen süre, boyutun üç bölü ikinci kuvvetiyle orantılıdır; yani boyutun küpünün kareköküyle. Kepler’in bu üç yasası gezegenlerin Güneş çevresindeki hareketlerini tam olarak belirlemektedir.
Bundan sonraki soru şuydu: Gezegenleri Güneş çevresinde hareket ettiren şey nedir? Keplerle aynı dönemde yaşamış bazı kişiler bu soruyu şöyle yanıtlıyorlardı: Melekler kanatlarını çırparak gezegenleri arkadan yörünge boyunca iterler. Daha sonra göreceğiniz gibi bu yanıt gerçeğe pek de uzak sayılmaz. Tek fark, meleklerin farklı yönlerde oturup kanatlarını içeriye doğru çırpıyor olmalarıdır.
Aynı sıralarda Galileo da Dünya’daki sıradan cisimlerin hareket kurallarını inceliyor, bu inceleme sırasında da bazı deneyler yapıyordu. Toplar eğik bir düzlemden aşağı doğru nasıl yuvarlanıyor, sarkaçlar nasıl sallanıyordu?Galileo "eylemsizlik ilkesi" denilen önemli bir kural keşfetti.
Kural şuydu: Düz bir doğru üzerinde belirli bir hızla hareket eden bir cisim, hiçbir etken olmazsa bu doğru boyunca, aynı hızla, sonsuza kadar gitmeye devam edecektir. Bir topu durmamacasına yuvarlamaya çalışmış olan herkes için buna inanmak güç olsa da; bu ideal şartların varlığında, yerdeki sürtünme gibi etkenler olmasa, top gerçekten de düzgün bir hızla sonsuza kadar gidecektir.
Daha sonraki gelişme Newton’un şu soruyu tartışması ile başladı: Eğer cisim düz bir doğru boyunca hareket etmiyorsa ne olur? Buna verdiği yanıt da şu oldu: Hızı herhangi bir şekilde değiştirmek için kuvvet uygulamak gerekir. Örneğin, bir top hareket ettiği yönde itilirse hızı artar.
Eğer gidiş yönü değişmişse kuvvet yandan uygulanması gerekir. Kuvvet iki etkinin çarpımı ile ölçülebilir.Ufak bir zaman aralığında hzının ne kadar değiştiği, "ivme" olarak tanımlanır. Bunu cismin kütlesi veya eylemsizlik katsayısı ile çarparsık kuvveti buluruz. Bu ise ölçülebilir.
Örneğin bir ipin ucuna bağlanmış bir taşı başımızın üzerinde döndürürsek, ipi çekmemiz grektiğini farkederiz. Nedeni şudur: Taşın hızı sabit olmakla birlikte, bir çember çizerek döndüğü için yönü değişmekte, bu nedenle de taşı sürekli içeriye doğru çekin bir kuvvet gerekmektedir; bu kuvvet de kütle ile orantılıdır.
Şimdi iki ayrı taş alıp önce birini sonra diğerini döndürelim ve ikinci taş için gereken kuvvveti ölçelim. Bu kuvvet, birinciden, kütlelerinin farklılığıyla orantılı olarak daha büyük olacaktır. Hızı değiştirmek için gereken kuvveti saptamak, kütleyi ölçmek için bir yönetem oluşturur.
Newton, bundan bir başka sonuç çıkardı. Onu da basit bir örenkle açıklayalım: Eğer bir gezegen Güneş çevresinde bir çember boyunca gidiyorsa, onun yana doğru, teğet boyunca gitmesi içi kuvvete gerek yoktur. Eğer herhangi bir kuvvet olmasaydı başını alır giderdi.
Ancak gezegen bunu yapmıyorr;kuvvetin olmaması durumunda bir süre sonra gitmiş olcaeğı ta uzaklarda değil, Güneş’e yakın bir yerde bulunuyor. Başka bir deyişle,hızı ve hareketi Güneş’e doğru sapıyor; yani meleklerin, kanatlarını sürekli Güneş’e doğru çarpmaları gerekiyor.
Bir gezegenin düz bir doğru boyunca hareket etmesinin bilinen bir nedeni yoktur. Nesnelerin sonsuza dek gitmeyi sürdürmelerinin nedeni bulunamamıştır. Eylemsizlik Kuramı’nın da bilinen bir kökeni yoktur. Melekler gerçek olmasa da harektin süregittiği bir gerçektir.
Ancak,düşme olgusu için kuvvete gereksinim vardır ve kuvvetin kökeninin Güneş’e doğru olduğu da anlaşılmıştır. Newton, eşit sürelerde eşit alan taranması kuramının, hızdaki bütün değişmelerin Güneş yönünde olduğu savının doğrudan bir sonucu olduğunu; bunun eliptik yörünge için de geçerli olduğunu göstermeyi başardı.
Bu yasayı kullanarak Newton, kuvvetin Güneş yönünde olduğunu ve eğer gezegenlerin periyotlarının Güneş’ten olan uzaklıklarıyla nasıl değiştiği bilinirse, bu kuvvetin uzaklık ile nasıl değiştiğinin de bulunabileceğini gösterdi ve kuvvetin, uzaklığın karesi ile ters orantılı olduğunu saptadı.
Buraya kadar Newton, pek bir şey söylemiş sayılmaz; çünkü yalnızca kepler’in ifade ettiği iki şeyi farklı biçimde dile getirmiş oluyordu. birincisi, kuvvetin Güneş yönünde olduğunu söylemekle; ikinci de kuvvetin, uzaklığın karesi ile ters orantılı olduğunu söylemekle aynı şeydi.
İnsanlar Jüpiter’in uydularının Jüpiter çevresinde nasıl hareket ettiklerini teleskopla görmüşlerdi. bu hareket tıpkı Güneş Sistemi’nde olduğu gibiydi; sanik uydular Jüpiter’e doğru çekiliyorlardı. Ay da Dünya’nın çekimindedir; Dünya’nın çevresinde döner ve Dünya’ya doğru çekilir. Sanki her şeyin birbirinin çekimi altınrdaymış gibi görünmesi bir sonraki kuramı; genelleme yapacak olursak her cismin her cismi çektiği yolunda olması sonucunu getirdi.
Eğer bu doğru ise, Güneş’in gezEgenleri çektiği gibi dünya da Ay’ı kendisine doğru çekiyordu. Dünya’nın cisimleri çektiği bilinen bir şeydi (hepimiz havada uçmak isetesek de iskemlemizde sık sıkı oturduğumuzu biliyoruz). Yeryüzü’ndeki çekim, yerçekimi olgusu olarak ilyi bilrdiğimiz bir şeydir.
Newton, Ay’ı yörüngede tutan çekimin, nesneleri Dünya’ya çeken kuvvetle aynı şey olabileceğini düşündü. Daha sonra Newton birçok yeni şey ortaya çıkardı. Çekim Yasası’nın ters kare olması durumunda yörüngenin şeklinin ne olacağını hesapladı ve bunu bir elips olarak buldu.
Ayrıca birçok farklı olaya da açıklama getirildi. Bunlardan biri gel-git olayıydı. Gel-git, Dünya ve denizlerin Ay tarafından çekilmesinden kaynaklanıyordu. Bu, daha önceleri de düşünülmüştü; ancak ortada bir pürüz vardı: Olay, Ay’ın denizleri çekmesinden kaynaklanıyorsa Ay’ın bulunduğu taraftaki sular yükselecek, o zaman günde ancak bir gel-git olacaktı.
Gerçekte ise yaklaşık oniki saatte bir, yani günde iki gel-git olduğunu biliyoruz. Farklı bir sonuca varan bir düşünce ekolü daha vardı. Buna göre de Dünya, Ay tarafından suyun dışına çekiliyordu. Gerçekte ne olup bittiğini ilk farkeden Newton oldu: Ay’ın aynı uzaklıktaki kara ve denizler üzerindeki çekim kuvveti aynıydı.
Gerçekte Dünya da Ay gibi bir çember boyunca hareket eder. Ay’ın Dünya’ya uyguladığı kuvvet dengelenmiştir; ama dengeleyici nedir? Ay’ın Dünya’nın çekim kuvvetini dengelemek için dairesel bir yörünge üzerinde hareket etmesi gibi, Dünya da dairesel bir yörünge üzerinde hareket etmektedir. Bu dairenin merkezi Dünya’nın içinde bir noktadadır ve Ay’ın kuvvetini dengelemek için darisel bir hareket yapmaktadır.
İkisinin de ortak bir merkez etrafında dönmesiyle, Dünya açısından kuvvetler dengelenmiş oluyor; ancak bir yöndeki su öteki yöndekine göre daha çok çekildiği için su iki yanda da kabarıyor. Herneyse, gel-git olayı ve günde iki kez gerçekleşmesinin nedeni böylece açıklanmış oluyordu. Bu arada açıklanan daha birçok şey vardı: Dünya, her şey içe doğru çekildiği için yuvarlaktı; kendi ekseni etrafında döndüğü için de yuvarlak değildi. Dış bölgeler biraz uzaga itilmişlerdi ve denge oluşuyordu.
Bilim ilerleyip daha hassas ölçümler yapıldıkça "Newton Yasası" da daha zorlu sınamalarla karşılaştı. Bunlardan ilki Jüpiter’in gezegenleriyle ilgiliydi. Uzun süre dikkatle yapılmış gözlemlerle hareketlerinin Newton Yasası’na uyumu saptanabilirdi. Ancak sonuç bunun doğuru olmadığını gösteriyordu.
Jüpiter’in gezegenleri, Newton Yasası ile hesaplanmış zamana göre, bazen sekiz dakika ileri, bazen sekiz dakika geri olan bir fark oluşturuyorlardı. Bu fark Jüpiter’in Dünya’ya yakın olduğu zamanlarda ileri, uzak olduğu zamanlarda ise geriye doğruydu. Bu tuhaf bir durumdu.
Yerçekimi yasasına güveni tam olan Danimarkalı astronom Roemer (1644-1710), bu durumda ışığın Jüpiter’in gezegenlerinden Dünya’ya gelmesinin zaman aldığı gibi ilginç bir sonuç çıkardı Ayrıca bu gezegenlere baktığımız zaman gördüğümüz şey onların o andaki durumu değil, ışığın bize gelmesi için geçen zamandan önceki durumuydu.
Jüpiter bize yakın olduğunda ışık daha kısa sürede, uzak olduğunda ise daha uzun sürede geliyordu. Bu neden Roemer’in gözlemleri zaman farkı yönünden şu kadar erken, bu kadar geç olmalarına görüe düzeltilmesi gerekiyordu. Bu yolla ışğın hızını ölçmeyi başarmış, ışığın bir anda yayılan birşey olmadığını da ilk kez göstermiş oldu.
Eğer bir yasa doğru ise başka bir yasanın bulunmasına da yol açabilir. Eğer bir yasaya güveniyorsak, ona ters bir şeyin ortaya çıkması bizi başka bir olguya doğru yöneltir. Yerçekimi yasasını bilmeseydik Jüpiter’in gezegenlerinden ne bekleyeceğimizi de bilemezdik; ışığın hızını ölçmek ise çok daha sonralara atılmış olurdu.
Bu süreç, adeta bir keşifler çağına yol açtı. Her yeni keşif, bir yenisine daha yol açan araçları da beraberinde getirir. 400 yıldan beri süregelen ve büyük bir hızla sürmele devam edecek olan bu çağ, işte bu şekilde başlamıştır.
Daha sonraları ortaya yeni bir sorun çıktı. Newton Yasası’na göre gezegenler yalnızca Güneş’in çekiminde değildi; birbirlerini de biraz çekiyorlardı. Öyleyse yörüngeleri eliptik olmamalıydı. Gerçi bu küçük bir çekimdi; ancak "küçük" olan da önem taşıyabilir ve hareketi etkiler.
Jüpiter, Satürn ve Uranüs’ün büyük gezegenler oldukları biliniyordu. Herbirinin diğerleri üzerindeki çekimi sonucu, yörüngelerinin Kepler’in kusursuz elipslerinden ne ölçüde farklı olduğunu saptayacak hesaplar ve gözlemler yapıldı. Sonuçta Jüpiter ve Satürn’ün hesaplamalara uygun hareket ettikleri; Uranüs’ün ise ‘tuhaf’ davrandığı ortaya çıktı.
Adams ve Leverrier adındaki iki astronom, birbirinden bağımsız olarak yaptıkları çalışmalar sonucunda neredeyse aynı anda, Uranüs’ün hareketlerinin görünmyen bir gezegenden etkilendiğini iler sürdüler. Herbiri kendi gözlemevine "teleskopunuzu çevirin ve orayı gözleyin. yeni bir gezgen göreceksiniz" şeklinde birer mektup yolladılar.
Gözlemevlerinden birinin tepkisi "Saçma! Eline kalem kağıt alıp oturan biri, bize gezegen bulmak için nereye bakacağımızı söylüyor" şeklindeydi. Diğer gözlemevinin yöntemi farklıydı ve Neptün’ü buldu.
20. yy’ın başlarında Merkür’ün hareketinin tam da "doğru" olmadığı anlaşıldı. Einstein, Newton Yasalarının biraz hatalı olduğunu ve değiştirilmeleri gerektiğini gösterinceye dek bu durum hayli sıkıntıya yol açtı. Şimdi de bu yasanın kapsamının genişliği sorusu ortaya çıkıyor.
Yasa, Güneş Sistemi dışında da geçerli midir? Galaksimizi birarada tutan şey, yıldızlar arasındaki çekim kuvvetidir. Dünya’dan Güneş’e olan uzaklık sekiz ışık dakikası olduğu halde, galaksilerin uzunlukları 50.000-100.000 ışık yılıdır. Ancak çekim kuvvetinin bu büyük yıldız yığınlarında, bu ölçekteki uzaklıklarda bile geçerli olduğundan kuşkulanmak için bir neden yoktur.
Çekim kuvvetinin varolduğunu doğrudan kanıtlayabileceğimiz uzaklık bu kadar; yani Evren’in büyüklüğünün onda biri veya yüzde biri kadar uzaklıktır. Buna göre, gazetelerde birşeylerin Dünya’nın çekim kuvveti dışına çıktığına ilişkin haberler okusanız da, Dünya’daki yerçekiminin kesin bir sonu yoktur.
Bu yerçekimi, uzaklığın karesi ile ters orantılı olarak giderek zayıflar; uzaklık iki katın çıkınca o da dört kat zayıflar ve böylece diğer yıldızların güçlü alanlarının karmaşasında kaybolur. Çevresindeki yıldızlarla birlikte başka yıldızları çekerek galaksi oluşturur; bu galaksi de diğer galaksileri çekip bir galaksiler kümesi oluşturur. Böylece Dünya’nın çekim alanı hiç bitmez; ancak belirli ve düzenli bir şekilde zayıflayarak belki de Evren’in sınırlarına kadar gider.
Çekim Yasası, diğer yasaların çoğundan farklıdır. Evren’in ekonomisi ve mekanizması için çok önemli olduğu açıktır ve Evren yönünden birçok pratik uygulaması da vardır. Ancak, diğer fizik yasalarından farklı tipik bir özelliğe sahiptir: bilinmesi pek az pratik yarar sağlar.
Bir galaksiyi oluşturan birçok yıldız değil, sadece gazdır. Belki de her şeyi başlatan, bir şok dalgası olmuştur. Bundan sonraki olaylar, çekim kuvvetinin etkisiyle gazın gittikçe sıklaşarak toplanması, büyük gaz ve toz yığınlarının ve topların oluşmasıdır. Bunlar içeriye doğru düşerken, düşmenin yol açtığı ısıyla yanar ve yıldız haline gelirler.
Böylece yıldızlar, çekim etkisiyle gazın sıkışıp biraraya gelmesiyle ortaya çıkıyorlar. Yıldızlar bazen patladıklarında toz ve gaz püskürtür, bu toz ve gazlar tekrar biraraya toplanıp yeni yıldızlar yaratırlar.

Karadeliklerin Gizemi

0 yorum | Devamını Oku...
KARADELİKLERİN GİZEMİ

Gökyüzü binlerce yıldır tutkunu olduğu muz ve anlayabilmek uğrunu büyük gayretler sarfettiğimiz meraklarımızın basında gelir, insanoğlu, başının üstündeki o sonsuz ve bir o kadar da gizemli uzayı tanıyabilmek için elinden gelen tüm imkanları seferber etmiş, geliştirdiği dürbünlerle, teleskoplarla, uydularla uzayın derinliklerinde ne olup bittiğinden haberdar olmaya çalışmıştır. Araştırmaları süresince, evrendeki konumunun ne olduğu konusunda bir karara varabilmiş, bunun yanında gittikçe artan yeni sorunlarla karşı karsıya kalmıştır.

Bugün, artık devasa bir evrende herhangi birinden pek farklı olmayan bir galakside ve küçük sayılabilecek bir yıldızın çevresinde hayatımızı devam ettirmeye çalıştığımızı biliyoruz. Yine sunun da farkındayız ki, en gelişmiş aletlerimizle ancak uzayın çok küçük bir bölümünü izleyebiliyoruz. Fakat buna rağmen, evrende bulunan maddenin yoğunluğu, kainatın ve dünyamızın yaşı, big-bang’le evrenin nasıl oluştuğu gibi birçok kozmolojik sorunu açıklayabilecek derecede fikir sahibiyiz.

Evrendeki olayları, zaman zaman gözlemlerimizden hareketle bazen de ortaya attığımız kuramlarla açıklamaya çalışırız. Bu durumda, evrende olup olmadığını bilmediğimiz bir takım sonuçlara da varabiliriz. İşte karadelikler de varlığı konusunda hiçbir şey bilinmeden, bütün matematiksel açıklamaları ve teorileri elde edilmiş nadir konulardan biridir.

İlk defa 1969′da Amerikalı J. Wheeler tarafından adlandırılan karadelikler sonsuz yoğunlukta madde taşıyabilen gök cisimleridir. Güneş’ten yüzlerce kere daha büyük olan yıldızlar, yaşamlarının sonunda o kadar küçülürler ki bir nokta kadar boyutsuz, hacimsiz bir yapıya bürünebilirler. Öyle ki, bu yapıdan bir çay kaşığı kadar almaya kalksanız: tonlarca maddeyi taşımanız gerekir. Bu yoğun ve kavranılması güç oluşumlar, karadeliklere çok yoğun ve etkili bir çekim alanı kazandırır. Nitekim, A.Einstein’ın özel relativite teorisinde belirttiği "evrendeki en yüksek hıza sahip ışık" bile karadeliklerin yeterince yakınına geldiğinde bu güçlü kütle çekimine yenilerek, karadelikler tarafından yutulur. VVheeler, hiç şüphe yok ki, üzerine gelen ışığı yutabildi-ğinden dolayı karadeliklere bu ismi vermişti.

Karadeliklerin gözlemlenmesi

Karadelikler, üzerlerine gelen her maddeyi ve ışığı kolayca emebildiklerinden dolayı hiçbir zaman doğrudan gözlenemezler. Çünkü, bir cismi görebilmemiz İçin, ancak ondan bize ışık ışınlarının gelmesi gerekir. Bir karadelik ise, uzaydaki gaz ve tozları toplarken çevresindeki uzayda bir takım değişiklikler yapar. İste. onları bu etkilerinden yararlanarak, dolaylı yoldan gözleyebiliriz.

Karadeliklerin gözlemlenebilirle yöntemlerinden biri, çevresinde yarattığı çok güçlü çekimsel alandan geçen ışığın, sapmasının Ölçülmesidir. Kuvvetli çekim alanlarından gecen ışık ısınları, bildiğimiz doğrusal yolundan sapar. Bu ilke. gerçekte yıldız, gezegen, nebula gibi uzayda bulunan büyük kütlelerin, bulundukları yerlerde kütlelerinin büyüklüğüne göre. göremediğimiz ancak teorik ve deneysel olarak bilinen eğrilikler, çukurluklar oluşturmasından ileri gelir, Sözgelimi. Güneş’in çevresinde bu eğrilik çok az olduğundan, ışık 1.64 sn’lik bir acı farkıyla eğilir. Ama bunu karadelikler için düşündüğümüzde, saptırıcı etkinin çok daha büyük olduğunu görürüz. Bir karadeliğin arkasında bulunan bir yıldızdan çıkan ışının bize ulaşabilmesi için O en az iki yolu vardır. İşık ısınlarının her biri. karadeliğin bir yai nından gelmek üzere ayrılarak bize ulaşırlar. Dolayısıyla biz. bir yıldızı ikiymiş gibi görürüz. Bu olaya "çekimsel mercek" etkisi denir.

Karadeliklerin araştırılmasında en verimli yöntem, uzaydaki gaz ve toz zerrelerinin karadelik tarafından emiliminin saptanmasıdır. Bir karadeliğin çekimine kapılan gazlar, çok kuvvetli x -ışını ışıması yapar. Bu ışının çok uzaktan algılanabilmesi İçin de. karadeliklerin ancak yıldızlararası gaz ve tozların bol olduğu bölgelerde aranması gerekir. Böylece, bir karadeliğin gözlenebilmesi için en ideal konumun, yıldızların hemen yanı olduğu anlaşılır.

1970′de Amerika’nın uzaya gönderdiği bir x-ısını uydusu olan "Uhuru" uzaydan ilginç bir takım veriler elde etti. Daha bir yılını doldurmamıştı ki Uhuru, Kuğu takımyıldızının en parlak yıldızı olan Cygnus x-l’de çok yoğun x-ışını yayılımı buldu. Cygnus x -l saniyede bin kereden fazla titreşiyordu. Bu da sözü edilen ışık kaynağının boyutlarının, beklenenden çok daha küçük olduğunu gösteriyordu. Dikkatle yapılan gözlemlerin sonunda: bu yıldızın HD226868 tarafından beslenen bir karadelikti. Teorilerin, yıllar önce öngördüğü sonuçlar, gerçekleşmişti.

İzleyen yıllarda, uzaya bir çok x-ışını uydusu gönderildi. Bu uydular da 339 ayrı x-ısını kaynağı hakkında bilgi toplayan Uhuru’nün izinden giderek, bize evrenin x-ısmı haritasını çıkardılar. Bu haritada özellikle Circu-nus x-l. GK339-4 ve V861 Scorpii karadelik olarak kabul edilen ilk gök cisimleridir.

Eğri uzay zamanın anlamı

Einstein 1905 ve 1915 yıllarında ortaya attığı özel ve genel görelilik kuramlarıyla doğaya, maddeye, uzaya ve zamana farklı bir bakış açısı getirdi. Onun bu buluşlarıyla; belki de fizik, felsefe dalında en Önemli sınavını veriyordu. Birbiriyle İlintili olan bu kuramlara göre; hareket eden saatler yavaşlayabiliyor, cetvellerin boyları kısalıyor cisimlerin kütleleri, hızları dolayısıyla artabiliyordu. Einstein’ın yeni denklemleri Newton’un koyduğu klasik anlayışa, ancak ışık hızından çok küçük hızlarda uygunluk göstermekteydi.

Einstein. hep saatlere, cetvellere ve gözlemcilere bağlı olmayan evrensel bir çekim kuramı hayal ederdi ve Tanrı’nın, kendine bir keçi inadı ile İyi koku alan bir burun verdiğini söylerdi. Gerçek şu ki; O’nun bu özellikleri amacına ulaştırmıştı.

Genel görelilik kuramı, kütle çekiminin nasıl islediğini anlatır. Ama bunu yaparken; hiçbir zaman çekimi bir kuvvet olarak düşünmez. Bunun yerine, cisimlerin çevresindeki çekim alanlarının, uzay ve zamanın bükülmesi sonucu oluştuğunu söyler. Cisimler, içerdikleri kütlelerine oranla uzayda çukurluklar oluşturur. Ve zamanın akışını yavaşlatır. Ancak uzayın derinliklerinde, tüm çekim kaynaklarından uzakta, uzay ve zaman tam anlamıyla düzdür. Çekim alanının gücü arttıkça uzay-zaman eğriliği de artış gösterir. Bütün bunlardan çıkan sonuç şudur: Madde uzay-zamanın nasıl eğileceğini, uzay-zaman da maddenin nasıl davranacağını belirler.

Uzay-zaman düşüncesine somut bir örnek olarak sunu verebiliriz: Ilık bir yaz gecesi uzaya baktığınızı düşünün. Binlerce yıldız, gözlerinizin önüne serilmiştir. Bize en yakın yıldızlardan olan Sirius’a gözlerimizi kaydırdığımızı haya! edelim. Sirius. güneş sistemine yaklaşık 8,5 ışık yılı uzaklıktadır. Bu ise; o yıldızdan çıkan bir ışık ışınının gözümüze ancak 8,5 yıl sonra ulaşabildiğini bize anlatır. Yani yıldıza bakmakla onun 8,5 yıl önceki halini görmekteyiz. Ya 250 milyon ışık yılı uzaklıktaki bir galaksiyi gözlemlediğimizi düşünsek? Tahmin edersiniz ki; galaksinin yeryüzünde dinazorların hüküm sürdüğü devirlerdeki görüntüsünü algılarız.

Sonuç olarak, yıldızlara bakmakla uzayın zamandan ayrı düşünülemeyeceğini kavrarız. Çünkü, gökyüzünü incelerken, aslında evrenin geçmişine bakmaktayız. İşte. birbirinden ayrı olarak düşünmediğimiz bu dört boyutlu anlayışa (en. boy. yükseklik, zaman) uzay-zaman denir. Nasıl, bir cetvel uzunluğu ölçüyorsa . kolumuzdaki saat de zaman yönünde uzaklığı ölçer.

Einstein. kuramın matematiksel ispatı yanında bir de deney önerdi. O’na göre Güneş de ışığı belli bir oranda saptamalıydı. 1919′da bir Güneş tutulması esnasında, uzaydaki konumu önceden bilinen bir yıldız üzerinde gözlem yapıldı. Gerçekten de. yıldızın ışığı Güneş’in yanından geçerken: uzay-zaman eğriliği nedeniyle önceki konumundan daha açıkta görülüyordu. Gözlem sonunda elde edilen sayılar da teorik hesaplarla bulunana yakındı. 60 yıl boyunca tekrarlanan diğer deneyler de Einstein’i haklı çıkardı. Günümüzde de çok hassas aletler yardımıyla, uzayda yapılacak bir deney düşünülüyor. Dünyanın dönme ekseninin bulunduğu düzlem üzerine, yaklaşık 640 km yüksekliğe yerleştirilecek GP-B kütle çekim aracı en hassas uzay-zaman gözlemini yapacak.

Görelilik kuramı, uzayın eğriliğine bağlı olarak zamanın da akışının yavaşlayacağını belirtir. Uzayda, eğim ne kadar fazlaysa o bölgede aynı oranda. zaman yavaş işler. Eğimin en fazla olduğu yerler de gök cisimlerinin merkezleridir. Merkezden uzaklık arttıkça zamanın büzülmesi de azalır. Çok katlı bir binanın zemin katı ile en üst katı arasındaki zaman farkı ilk defa 1960′da ölçülebildi. Günümüzde isg, en hassas saatler olan atom saatleriyle yapılan çeşitli deneyler de bu ilkeyi destekledi.

Karadeliklerin yapısı ve çeşitleri

Yıldızların sonları, içerdikleri kütlelerine göre tespit edilir. Kütlesi Güneş kütlesinin yaklaşık 1,5 katından aşağı olan yıldızlar, yapılarında bulunan hidrojeni önce helyuma sonra da helyumun tamamını karbon ve oksijene çevirerek yakarlar. Artık yıldızın tüm enerjisi bitmiş ve yıldız beyaz cüce haline gelmiştir. Beyaz cüceler oluşurken, atomlar öyle büyük kuvvetlerle sıkışır ki, çekirdeğin etrafında dolanan elektronlar, çekirdeklerinden ayrılırlar. Yıldız dünyamızın boyutlarına değin küçüldüğünde, elektronlar uygulanan yüksek basınca karşı koyar ve yıldızın artık daha çok büzüşmesini önlerler.

Güneş kütlesinin 1,5 katından büyük kütleli yıldızların sonu ise uzun süren araştırmalardan sonra cevaplanabilmiştir. 1928 yılında, fizik doktorasını yapmak için İngiltere’ye doğru yola çıkan Hintli bilimadamı Chandresekhar, bir ay süren gemi yolculuğu süresince kamarasına kapanıp çalışarak çok ilginç bir buluş elde etti. Chandresekhar’a göre eğer bir yıldızın kütlesi. Güneş’in yaklaşık 1.5 katı ve daha fazlasıysa bu yıldız büzülmeye başladıktan sonra beyaz cüceden daha da küçülüp çok yoğun hale gelebilirdi. Ama genç araştırmacıların fikirlerini kabul ettirebilmesi zordu: nitekim Sir Eddington, yıldızın bu katlar küçülmesine doğanın izin vermeyeceğini söyleyerek Chandresekhar’ın çalışmasını geri çevirmiştir. Zaman geçtikçe, gene araştırmacı haklı çıkacak ve reddedilen bu çalışmasıyla bir nobel ödülü alacaktı. Aynı vıilar-da Rus fizikçi Landan da aynı konu üzerinde çalışmaktaydı. O, biraz daha şanslıydı ve çalışmasını bir dergide yayınlatabildi. Amerikalı Openheinmer, öğrencisiyle hazır

ladığı "sürekli kütle çekimsel büzülme "adlı makalesinde. Landau’nun eksikliklerini de düzelterek problemin üstesinden gelir. Buna göre sözü edilen kütlede bir yıldız:ömrünün sonuna gelirken,beyaz cücelerin elektron basıncı sonucu yakamadığı karbon-oksijen zengini katmanını da tepkimeye sokabilir. Çünkü bu denli büyük kütle nedeniyle oluşan basınç, yıldızın sıcaklığını 700 milyon dereceye kadar yükseltebilir.

Ard arda oluşan diğer tepkimeler sonunda; yıldız silikon ve demir zengini bir kütleye dönüşür. Artık demir, merkezdeki sıcaklık ve basınç ne olursa olsun termonükleer tepkimeye giremez. Bu halde, yıldızın atomundaki eksi yüklü elektronlarla, artı yüklü protonlar birleşerek yüksüz nötronları oluştururlar. Oluşan bu nötronlar daha az yer kapladıklarından yıldız, çok çok güçlü ışın yayan ani bir çökme evresinden geçer. Bu çökme anında yayılan enerji o kadar fazladır ki; yıldızın doğumundan o ana kadar ki yaydığı toplam enerjiye denktir. Daha sonra şiddetli bir patlama duyarız. Çünkü yıldız, tümüyle parçalanmış ve süpernova olmuştur. Bu patlamadan arta kalan ise sadece nötronca zengin bir "nötron yıldızı"dır.

Oppheimer, nötron yıldızının yukarıda saydığımız özellikleri üzerinde çalışırken bir an, incelediği yıldızın kütlesinin Güneş kütlesine göre 2.5 katı ve fazlası olduğu durumu düşündü. Hiçbir doğa kuvveti, böyle bir yıldızın basıncını dengeleyemezdi. Saniyeler içinde: elektronlar, nötronlar ve protonların birbiriyle karışması sonucu, yıldız daha fazla küçülüp. uzayı diğer gök cisimlerinden daha çok eğerdi. Bunun sonunda, küçülme o kadar an-lamsızlaşır ki artık ortada ne nötron, elektron, kuark ne de madde vardır. Sadece, boyutsuz bir nokta olan "tekillik"vardır orada…İşte karadelikler…

Çökme sonucu uzay-zaman eğrileri o kadar artmıştır ki. artık yıldıza ilişkin hiçbir şeyi algılayamadığımız an; yıldızın, "olay ufkunun" altında kaldığını kabul ederiz. Olay ufku bizim, hiçbir fiziksel incelemede bulunamadığımız uzay parçasıdır. Çünkü olay ufkundan ötesini, bizim yasalarımızla açıklayamayız. Adeta başka bir evrendir orası ve orada ne olup bittiğini bilmenin bir yolu yoktur. Bir yıldızın olay ufku ,yıldızın çökmeden önceki kütlesiyle yakından ilişkilidir. Örneğin, kütlesi. Güneş’in kütlesinin 10 katı olan bir yıldız, çapı 60 km olan bir olay ufkuna sahiptir. Kütle arttıkça, olay ufku da genişler.

Buraya kadar ki anlattıklarımıza bakılırsa, aslında bir karadeliğin çok basit bir yapısının olduğu anlaşılır. Olay ufkuyla çevrelenmiş bir tekillik… Hepsi bu kadar! Bunun yanında, karadeliğin gerçekten boş olduğunu hatırlamak gerekir. Orada, ne atomların, ne kayaların ne de uzaydaki gaz ve toz bulutlarının İzine rastlanmaz. Yıldızı oluşturan tüm madde; karadeliğin merkezindeki tekillik noktasında yok olmuştur. Elimizde kalan tek şey, sonsuz eğilmiş uzay-zaman’dır.

Einstein, önceleri her ne kadar görelilik kuramıyla uzayda çok yoğun maddelerin varolamayacağını İspatlamaya çalıştıysa da, kıvrak zekasının yanıldığı bir nokta da bu olmuştu. Kuramının öngördüğü etkiler, karadeliklerin yakınında inanılmaz boyutlarda artış gösterir. Örneğin, kütle çekiminin yeryüzünde zamanı yavaşlattığı biliniyorken. karadeliğin olay ufkunda zaman tümüyle durmaktadır. Eğer. korkusuz bir astronotun karadeliğe doğru ilerlediğini düşünürsek: O’nun saatinin bizimkine göre yavaş çalıştığını farkederiz. Olay ufku geçildiğinde ise. zaman sonsuza değin duracak fakat astronotun bundan haberi olmayacaktır. Çünkü kendi vücut faaliyetleri de aynı oranda duracaktır, Bu uzun adamının haberdar olacağı bir şey varsa; o da ışık hızıyla karadeliğin tekilliğine doğru çekildiğidir.

Günlük yaşantımızda, uzayın üç boyutunda (aşağı-yukari: sağa-sola; ileri-geri hareket etme serbestliğine sahibiz ama istesek de istemesek de beşikten mezara doğru bir zaman akışımız vardır. Karadeliğin çevresindeki olay ufkunun içinde ise "zaman içinde" hareket etme özgürlüğü kazanırız ama uzay boyutlarında hareket özgürlüğümüzü yitiririz. Tekilliğe doğru çaresizce çekiliriz.

Acaba bu kozmik elektrik süpürgelerini yalnızca maddesel yoğunluk mu etkiler? Doğada, sadece kütle mi onların yapısında söz sahibidir? Karadelikler. yapılarına göre üç kısımda incelenir: Maddesel, elektriksel ve dönen karadelikler…

Maddesel karadelikler çevrelerindeki maddeleri yutarken herhangi bir elektrik yükü taşımazlar ve çevrelerinde dönmezler. Böylece; yüksüz, durağan karadelik yalnızca tekilliği çevreleyen, bir olay ufkunda oluşur. İlk denklemlerini 1916′da Alman gökbilimci K.Schwarzchild in yazdığı bu karadeliklere "Schwarzchild karadelikleri" de denir. Karadeliklerin, yuttuğu maddeye oranla olay ufuklarını genişlettiklerini biliyoruz. Bu da karadeliğin daha güçlü çekini alanına sahip olmasına neden olur. Madde yuttukça güçlenen karadelik. cisimlerin niteliğine bakmadan. sonsuza değin onları geri salmaz. Ancak olay ufkunun incelenmesiyle, bir karadeliğin kütlesi hakkında fikir sahibi olunabilir.

Şimdi de Schwarzchid karadeliğine bir elektron düştüğünü düşünelim. Bu durumda karadelik elektrik yüküyle yüklenir. Yüklenme arttıkça da tekilliğin çevresinde ikinci bir olay ufku oluşur. Böylece karadeliğin çevresinde, zamanın durduğu iki yeri rahatlıkla gösterebiliriz. Elektrik yükü arttıkça iç olay ufku büyür, maddesel (dış) olay ufku ise küçülür. İki olay ufku çakıştığı an: karadelik alabileceği en fazla elektrik yükünü almış demektir. Bu durumda daha çok elektrik yüküyle zorlarsanız, olay ufkunun dağıldığı ve geriye çıplak tekilliğinin kaldığı bir karadelik elde edersiniz. Bu görüşler ilk kez 1916-18 yıllan arasında Alman H. Reissner ile Danimarkalı G- Nordstron tarafından ortaya atıldı. Bundan dolayı, elektrik yüklü karadeliklere çoğu kez; "Reissner-Nordstron Karadelikleri". denir. Bunların varlığı kuramsal olarak kabul edilse de uzayda gerçekten var olmalarını bekleyemeyiz. Nedeni ise, elektrik alanlarının, çekim alanlarından çok çok daha baskın olması ve karadeliğin; kendini elektrik yüküyle yüklerken, çevresinden gelen diğer yükler yardımıyla kısa sürede nötr hale getirilmesidir.

Gökyüzündeki hemen hemen tüm yıldızlar kendi çevrelerinde döner. Bunların dönme hızları, büyüklükleri nedeniyle çok küçüktür. Ama bu yıldızlardan herhangi biri çökerek karadelik haline gelirse dönme hızı da artıverir. Böylece bu dönme hareketleri, karadelikler için vazgeçilmez derecede önemli olur. Dönen bir karadelik. çevresindeki uzay-zamanı da sürükler. Bu nedenle ki böyle bir karadeliğin çevresine ışık demetleri gönderilirse; demetler tekilliğin çevresinde dönen uzay-zamanın akış yönüne göre değişik miktarlarda saparlar.

Bundan hareketle, karadeliğin toplam dönme miktarı ölçülebilir. Yine Schwarzchild karadeliği tipinde karadeliğin döndüğünü düşünürsek, tekilliğin çevresinde ikinci olay ufkunun oluştuğunu farkederiz. Dönen karadeliklerin uzay-zamanı sürüklemesini ve önemli özelliklerini Y. Zelandalı matematikçi P. Kerr tanımlamıştır. Dr. Kerr, 1963′de bir kütleye ve dönmeye sahip karadeliği tümüyle açıklayabilen denklemleri yazmayı başarmıştır. Dönen karadeliklere kısaca"Kerr karadelikleri" de denir. Tıpkı elektrik yüklü karadeliklerde olduğu gibi bunlarda da zamanın akmadığı iki olay ufku bulunur. Deliğin dönme hızının artması: İç olay ufkunu genişletir ve dış olay ufkunu daraltır. Karadelik maksimum hızında dönmeye başladığında ise iki olay ufku çakışır. Bu limit değerden yüksek hızlar için olay ufku kaybolur ve çıplak tekillik kalır.

Dikkat edilirse, elektrik yüklü karadeliklerle. dönen karadelikler arasında şaşırtıcı benzerlikler bulunur. Bunlardan en önemlisi ise her iki tipin de çift olay ufkuna sahip olmasıdır. Buna rağmen, aralarında farklılıklar da bulunur. Elektrik yüklü olanlarda tekillik yalnızca bir noktadan ibaretken dönen karadelik için tekillik bir halkadır. Halka tekillik, havada asılı duran bir yüzük gibidir ve karadeliğin dönme eksenine dik, ekvator düzleminde yer alır.

Durağan ya da elektrik yüklü bir karadeliğin merkezine giden biri. sonsuz eğrilmiş uzay zaman tarafından parçalanır. .Buna karsın, dönen bir karadelikte; tekilliğe dik (yüzüğün ortasından geçecek şekilde) yaklaşıldığında, eğilmiş uzay-zamandan etkilenmeden halka tekilliğin içinden geçiverirsiniz. Ama bu geçişle, çekim kuvvetinin itici olduğu "anti uzaya" girilir. Yani, elemanın yere değil, göğe düştüğü bir evrene !

Karadeliklerin tuhaf özellikleri

Herhangi bir yıldızın tanımlanabilmesi için: merkezinden yüzeyine değin gaz basınçlarının, madde yoğunluğunun, sıcaklığının ve kimyasal bileşiminin hakkında fikir sahibi olmak gerekir. Fakat, bu ayrıntılardan hiçbiri karadeliğin tanımlanmasına girmez. Bir karadeliği anlamak; onun sebep olduğu uzay-zaman eğriliğini incelemek demektir.

Önceki bölümlerde, yeterince büyük kütleli bir yıldızın, ölümünden sonra uzay-zamanı eğdiğini belirtmiştik. Uzun yıllar, bu eğilmenin fiziksel anlamı üzerine fikir yürütüldü. 1930′iarda, Einstein ve Rosen, uzay-zaman eğilmesinin, yıldız; karadelik haline geldiğinde maksimum olması gerektiğini söylediler. Onlara göre; oluşan bu eğrilik başka bir evrene açılmaktadır. Durağan karadelik-lerin bu özelliğine "Einstein Rosen Köprüsü" denir. Bu ikinci evren görüşüyle ilgili olarak çeşitli fikirler oluşturulabilir. Bir düşünceye göre. karadeliğin açıldığı ikinci evren, bizim evrenimizin uzak bir köşesidir. Eğer uzayın düz olduğu kabul edilirse, bu durumda oluşan delik daha çok bir elmanın içindeki kurdun yolunu andırır. Böylece, uzayda "kurt deliği" oluşmuş olur. Evrenimizde, birçok karadeliğin varolduğu düşünülürse: uzayın, birbiri içine geçmiş sayısız tünellerden oluşmuş olduğu anlaşılır.

Karadelikleri salt geometrik düşüncelerden yola çıkarak açıklamak, bir takım fantastik sonuçlara neden olur. Söyle ki; durağan bir karadeliğe düşen insan, tam olay ufkuna tekrar döndüğünde, matematiksel olarak kendisiyle tekrar karşılaşır. Çünkü orada zaman durmuştur. Bu gibi ilginçlikler bize, uzay-zamanın salt geometrik düşüncelerle açıklanamayacağını gösterir.

1960′ların sonunda, İngiliz matematikçisi R.Penrase, karadeliklerle ilgili uzay-zamanın tamamını anlatabilen bir yöntem geliştirdi. "Penrose çizimi" yöntemine göre: zaman dikey eksende ve uzaydaki uzaklıklar da yatay eksende alındığında, bir kareler sistemi oluşturulabilir. Karelerin iç kenarları her biri yatayla 45 derecelik açı yapacak şekilde çizilmiştir. Bu kenarlar, olay ufku olarak adlandırılır ve sadece ışık, bu çizgilerde hareket edebilir. Çizginin sağına geçebilmemiz 45 derecelik acıdan büyük olduğundan yasaktır. Çünkü o zaman ışık hızından fazla bir hıza sahip oluruz. Bu şartlarda ancak ışık hızından küçük hızlarla gidebileceğimiz yollan kullanabiliriz. 45 dereceden büyük her açı için. bir karadelik seyahati düşünülebilir. Seyahatimiz sırasında ola1; ufkunu geçersek: karadelik tekilliğine çarparız. Işık hızından büyük hıza ulaşamadığımızdan; durağan karadeliklerde kurt deliğinin öteki yüzüne çıkabilmemiz imkansızdır.

Elektrik yüklü ve kendi çevresinde dönen karadelikler için ise Penrase çizimi çok daha farklıdır. Çizimlerdeki temel farklılık bu karadeliklerin çift olay ufkuna sahip olmasından kaynaklanır. En kayda değer Özellikleri ise, iki olay ufkuna sahip olan karadelik-lerle, başka evrenlere geçebilme şansımızın teorik olarak bulunmasıdır. Başka bir deuisle: bu tipteki karadelikier v/ardımıyL-ı kurt deliğinin diğer ucundan fırlayabiliriz. Tabii ki: Penrose çizimlerinden çıkan bu tuhaf bilimkurgu bilgilerinin daha pek çok eksiklikleri vardır. Bu halde planlanan bir yolculuk denemesi; Nayagara Şelalesi’nclen bir fıçı içinde atlamaya benzer ki: bu da karadelik yolculuğu yanında çocuk oyuncağıdır.

Karadelikler de ölür

S. Hawking: "Samanyolu galaksisinde görünen 200 milyon yıldızdan daha fazla karadelik olmalı ki. galaksimizin niçin bu kadar hızlı döndüğü açıklanabilsin" demektedir. Gözümüzün önüne tüm uzayı getirdiğimizde bu kozmik oburların sayısının daha da kabaracağı açıktır. İnsanın, ister istemez su soruları sorası geliyor: Karadeliklerin bir sonu yok mu? Evrenimizin ölümü karadeliklerden mi olacak?

1971′de Hawking, karadelik oluşumunun yalnızca yıldız ölümüne bağlı olmadığını gösterdi. Herhangi, bir nesneye, bir protonun hacmine sığacak şekilde basınç uygulanırsa, minicik bir karadelik oluşabilir. Hawking. izleyen yıllarda. Oxford’un güneyindeki bir laboratuvarda, "karadelik patlamaları" konusunda bir konferans verdi. Herkesi hayrete düşüren "karadelikler dışarıya radyasyon yayıyorlar" sözü salonda serin rüzgarlar estirdi. Ünlü matematikçi J. Taylor, ayağa kalkarak;" Üzgünüm Hau’king. ama bunlar kesinlikle saçma!" diyerek bağırdı. Bugün "Haw-king Radyasyonu" olarak bilinen bu olgu; gerçekte kara-deliklerin. kuantum mekaniği çerçevesinde incelenmesinden elde edilmiştir.

İlk defa. 1932′cle D. Anderson tarafından bulunan pozitron (pozitif yüklü elektronlardan sonra artık; evrenimizde bulunan her bir parçacığın zıt yüklü bir esinin de varolduğu resmen ispatlanmış oldu. Parçacık hızlandırıcılarıyla, çok büyük enerjiler altında yapılan deneylerden sonra, evrenimizi oluşturan her bir parçacığın bir antiparçacığı olduğu: bunların bir araya gelmeleriyle enerjiye dönüşüp yok oldukları, gözler önüne serildi. Karadelikler gibi enerji bakımından çok yoğun olan ortamlarda da bu parçacık ve antiparçacıkların oluşabildikleri düşünüldü. Bu durumda; parçacıklar ve antiparçacıklar çok kısa anlar için birbirinden ayrılabilir ve bu çiftlerden biri. kendini, olay ufkunun dışında bulabilirdi. Artık bu parçacık, eşelinin karadelikte yok olması nedeniyle, evrenin her tarafına gidebilmekte özgürdür. Bu da bize radyasyon yayımı olarak görünür.

Karadelikten her ayrışan parçacık çifti, aynı zamanda onun enerjisinin bir kısmını da alıp götürür. Bu da "karadelik buharlaşması "dır. Hawking; buharlaşma ile karadeliğin kütlesi arasında bir ilişki olduğunu ortaya çıkardı. Karadelik küçüldükçe, parçacık yayınlama hızı artar, bu da kütlenin azalmasıyla, daha çok parçacığın açığa çıkmasına neden olur. Kütlesi gittikçe azalan karadelik, daha çok parça-cağın çekim alanından kaçmasına izin verir ve en sonunda milyonlarca atom bombasına eşdeğer korkunç bir patlamayla yok olur. Aslında; karadeliğin yuttuğu madde miktarı, radyasyondan büyük olacağından; Hawking en iyimser tahminle. Güneş kadar kütleli bir karadeliğin sonunda yıldan önce olamayacağını söylemektedir. Aynı şekilde, en erken yok olan karadeliklerin ömürleri ise. hesaplarla 10 milyar yıl olarak bulunur. Bu nedenle; kainatın ilk yıllarında oluşmuş olan çok sayıda minik karadeliğin günümüzde, yok olmalarını izleme şansımız vardır.

Zaman ilerledikçe, uzay hakkındaki bilgi dağarcığımız da genişliyor. Gelişmiş teleskop sistemimizle; karadelikler artık bize teorilerde olduğundan daha yakın. Belki ileride tüm gizemlerini çözme başarısını göstereceğiz: hatta belki onlara seyahatler düzenleyebileceğiz. Ama sunu da biliyoruz; şimdilik bu. çok erken…

Hakkımızda

Bu Sayfa Üzerinde Aklınıza gelecebilecek tüm sorulara cevap arayacağız, sormak istediginiz birşey varsa iletişim kısmından yazabilirsiniz.

Takip Listemizden

İstatistikler


Sitemizde 33 kategoride toplam yazı bulunmaktadır!

Görüntülenme

back to top